Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,45 @@ pipeline_tag: feature-extraction
|
|
6 |
tags:
|
7 |
- rag
|
8 |
- embedding
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tags:
|
7 |
- rag
|
8 |
- embedding
|
9 |
+
---
|
10 |
+
|
11 |
+
# ONNX Converted Version of IBM Granite Embedding Model
|
12 |
+
|
13 |
+
This repository contains the ONNX converted version of the Hugging Face model [IBM Granite Embedding 125M English](https://huggingface.co/ibm-granite/granite-embedding-125m-english).
|
14 |
+
|
15 |
+
## Running the Model
|
16 |
+
|
17 |
+
You can run the ONNX model using the following code:
|
18 |
+
|
19 |
+
```python
|
20 |
+
import onnxruntime as ort
|
21 |
+
from transformers import AutoTokenizer
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
# Define paths
|
25 |
+
model_path = "./onnx/model_uint8.onnx" # Path to ONNX model file
|
26 |
+
tokenizer_path = "./onnx/" # Path to folder containing tokenizer.json and tokenizer_config.json
|
27 |
+
|
28 |
+
# Load tokenizer
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
30 |
+
|
31 |
+
# Load ONNX model using ONNX Runtime
|
32 |
+
onnx_session = ort.InferenceSession(model_path)
|
33 |
+
|
34 |
+
# Example text input
|
35 |
+
text = "hi."
|
36 |
+
|
37 |
+
# Tokenize input
|
38 |
+
inputs = tokenizer(text, return_tensors="np", truncation=True, padding=True)
|
39 |
+
|
40 |
+
# Prepare input for ONNX model
|
41 |
+
onnx_inputs = {key: inputs[key].astype(np.int64) for key in inputs.keys()}
|
42 |
+
|
43 |
+
# Run inference
|
44 |
+
outputs = onnx_session.run(None, onnx_inputs)
|
45 |
+
|
46 |
+
# Extract embeddings (e.g., using mean pooling)
|
47 |
+
last_hidden_state = outputs[0] # Assuming the first output is the last hidden state
|
48 |
+
pooled_embedding = last_hidden_state.mean(axis=1) # Mean pooling over the sequence dimension
|
49 |
+
|
50 |
+
print(f"Embedding: {pooled_embedding}")
|