Upload 10 files
Browse files- onnx/config/config.json +27 -0
- onnx/granite_embedding_model.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
- onnx/onnx_conv.py +48 -0
- onnx/tokenizer/merges.txt +0 -0
- onnx/tokenizer/special_tokens_map.json +51 -0
- onnx/tokenizer/tokenizer.json +0 -0
- onnx/tokenizer/tokenizer_config.json +58 -0
- onnx/tokenizer/vocab.json +0 -0
- onnx/tools.py +35 -0
onnx/config/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ibm-granite/granite-embedding-30m-english",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 384,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 1536,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.46.3",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
onnx/granite_embedding_model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a723af95b77d48c4bec7f8d71c8091ca9e91dfdab6fef8e16d7a5780a0de7b50
|
3 |
+
size 121327615
|
onnx/model_uint8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c000bf5e8142c5dd9c14ae1e41c071821d68b90a8ca9e44e633221feb8f87398
|
3 |
+
size 30640016
|
onnx/onnx_conv.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Define the model name and output paths
|
6 |
+
model_name = "ibm-granite/granite-embedding-30m-english"
|
7 |
+
onnx_model_path = "./granite_embedding_model.onnx"
|
8 |
+
tokenizer_path = "./tokenizer"
|
9 |
+
config_path = "./config"
|
10 |
+
|
11 |
+
# Load the model, tokenizer, and config
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModel.from_pretrained(model_name)
|
14 |
+
config = AutoConfig.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# Save the tokenizer and config for later use
|
17 |
+
tokenizer.save_pretrained(tokenizer_path)
|
18 |
+
config.save_pretrained(config_path)
|
19 |
+
|
20 |
+
# Set the model to evaluation mode
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
# Example input for tracing
|
24 |
+
dummy_input = tokenizer("This is a test sentence.", return_tensors="pt")
|
25 |
+
input_ids = dummy_input["input_ids"]
|
26 |
+
attention_mask = dummy_input["attention_mask"]
|
27 |
+
|
28 |
+
# Export the model to ONNX
|
29 |
+
torch.onnx.export(
|
30 |
+
model,
|
31 |
+
(input_ids, attention_mask), # The model's inputs
|
32 |
+
onnx_model_path, # Path to save the ONNX model
|
33 |
+
input_names=["input_ids", "attention_mask"], # Input names
|
34 |
+
output_names=["output"], # Output names
|
35 |
+
dynamic_axes={
|
36 |
+
"input_ids": {
|
37 |
+
0: "batch_size",
|
38 |
+
1: "sequence_length",
|
39 |
+
}, # Batch size and sequence length can vary
|
40 |
+
"attention_mask": {0: "batch_size", 1: "sequence_length"},
|
41 |
+
"output": {0: "batch_size", 1: "sequence_length"},
|
42 |
+
},
|
43 |
+
opset_version=14, # ONNX opset version
|
44 |
+
)
|
45 |
+
|
46 |
+
print(f"Model saved as ONNX to {onnx_model_path}")
|
47 |
+
print(f"Tokenizer saved to {tokenizer_path}")
|
48 |
+
print(f"Config saved to {config_path}")
|
onnx/tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
onnx/tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"additional_special_tokens": [],
|
46 |
+
"bos_token": "<s>",
|
47 |
+
"clean_up_tokenization_spaces": true,
|
48 |
+
"cls_token": "<s>",
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"errors": "replace",
|
51 |
+
"mask_token": "<mask>",
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"trim_offsets": true,
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
onnx/tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/tools.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import onnx
|
2 |
+
|
3 |
+
# # Load the ONNX model
|
4 |
+
# model_path = "model_uint8.onnx" # Replace with the path to your ONNX model
|
5 |
+
# onnx_model = onnx.load(model_path)
|
6 |
+
|
7 |
+
# # Print model's input and output shapes
|
8 |
+
# for input_tensor in onnx_model.graph.input:
|
9 |
+
# print(f"Input Name: {input_tensor.name}")
|
10 |
+
# print(
|
11 |
+
# f"Input Shape: {[dim.dim_value for dim in input_tensor.type.tensor_type.shape.dim]}"
|
12 |
+
# )
|
13 |
+
|
14 |
+
# for output_tensor in onnx_model.graph.output:
|
15 |
+
# print(f"Output Name: {output_tensor.name}")
|
16 |
+
# print(
|
17 |
+
# f"Output Shape: {[dim.dim_value for dim in output_tensor.type.tensor_type.shape.dim]}"
|
18 |
+
# )
|
19 |
+
|
20 |
+
|
21 |
+
from onnxruntime.quantization import quantize_dynamic, QuantType
|
22 |
+
|
23 |
+
# Define the path to the original ONNX model and the quantized output model
|
24 |
+
onnx_model_path = "./granite_embedding_model.onnx" # Path to the original ONNX model
|
25 |
+
quantized_model_path = "./model_uint8.onnx" # Path to save the quantized ONNX model
|
26 |
+
|
27 |
+
# Perform dynamic quantization to UInt8
|
28 |
+
quantize_dynamic(
|
29 |
+
model_input=onnx_model_path, # Input ONNX model path
|
30 |
+
model_output=quantized_model_path, # Output quantized model path
|
31 |
+
weight_type=QuantType.QUInt8, # Use UInt8 for weights
|
32 |
+
)
|
33 |
+
|
34 |
+
# Print confirmation of quantization
|
35 |
+
print(f"Quantized model saved to {quantized_model_path}")
|