File size: 12,533 Bytes
7a178b2
 
 
 
 
 
 
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
9eb50e9
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
 
 
 
 
8468ef6
 
67f8d98
 
 
 
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
8468ef6
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
67f8d98
 
 
 
 
8468ef6
 
67f8d98
 
 
 
 
 
 
 
8468ef6
 
67f8d98
 
 
 
7a178b2
 
 
 
8468ef6
 
7a178b2
 
 
8468ef6
 
7a178b2
 
 
8468ef6
 
7a178b2
 
 
67f8d98
8468ef6
7a178b2
 
 
8468ef6
 
7a178b2
 
 
67f8d98
8468ef6
7a178b2
 
 
8468ef6
 
7a178b2
 
 
67f8d98
8468ef6
67f8d98
 
 
8468ef6
 
67f8d98
 
 
8468ef6
 
 
 
7a178b2
 
8468ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a178b2
b848cbd
7a178b2
 
 
b848cbd
 
7a178b2
2c32de6
b848cbd
7a178b2
b0f38a1
7a178b2
b848cbd
7a178b2
b848cbd
34aedeb
7a178b2
b848cbd
70226c0
7a178b2
b848cbd
7a178b2
 
 
 
 
b848cbd
 
7a178b2
 
b848cbd
 
7a178b2
 
 
 
 
 
 
8468ef6
7a178b2
1decc8d
7a178b2
 
 
 
8468ef6
 
 
7a178b2
 
8468ef6
7a178b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02aae6f
 
7a178b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b848cbd
257d697
5f0b2ec
b848cbd
2bc0888
7a178b2
b848cbd
 
7a178b2
b848cbd
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
model-index:
- name: granite-3.0-2b-instruct
  results:
  - task:
      type: text-generation
    dataset:
      type: instruction-following
      name: IFEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 52.27
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: instruction-following
      name: MT-Bench
    metrics:
    - name: pass@1
      type: pass@1
      value: 8.22
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: human-exams
      name: AGI-Eval
    metrics:
    - name: pass@1
      type: pass@1
      value: 40.52
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: human-exams
      name: MMLU
    metrics:
    - name: pass@1
      type: pass@1
      value: 65.82
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: human-exams
      name: MMLU-Pro
    metrics:
    - name: pass@1
      type: pass@1
      value: 34.45
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: commonsense
      name: OBQA
    metrics:
    - name: pass@1
      type: pass@1
      value: 46.6
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: commonsense
      name: SIQA
    metrics:
    - name: pass@1
      type: pass@1
      value: 71.21
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: commonsense
      name: Hellaswag
    metrics:
    - name: pass@1
      type: pass@1
      value: 82.61
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: commonsense
      name: WinoGrande
    metrics:
    - name: pass@1
      type: pass@1
      value: 77.51
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: commonsense
      name: TruthfulQA
    metrics:
    - name: pass@1
      type: pass@1
      value: 60.32
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: reading-comprehension
      name: BoolQ
    metrics:
    - name: pass@1
      type: pass@1
      value: 88.65
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: reading-comprehension
      name: SQuAD 2.0
    metrics:
    - name: pass@1
      type: pass@1
      value: 21.58
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: reasoning
      name: ARC-C
    metrics:
    - name: pass@1
      type: pass@1
      value: 64.16
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: reasoning
      name: GPQA
    metrics:
    - name: pass@1
      type: pass@1
      value: 33.81
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: reasoning
      name: BBH
    metrics:
    - name: pass@1
      type: pass@1
      value: 51.55
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: code
      name: HumanEvalSynthesis
    metrics:
    - name: pass@1
      type: pass@1
      value: 64.63
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: code
      name: HumanEvalExplain
    metrics:
    - name: pass@1
      type: pass@1
      value: 57.16
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: code
      name: HumanEvalFix
    metrics:
    - name: pass@1
      type: pass@1
      value: 65.85
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: code
      name: MBPP
    metrics:
    - name: pass@1
      type: pass@1
      value: 49.6
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: math
      name: GSM8K
    metrics:
    - name: pass@1
      type: pass@1
      value: 68.99
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: math
      name: MATH
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.94
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: multilingual
      name: PAWS-X (7 langs)
    metrics:
    - name: pass@1
      type: pass@1
      value: 64.94
      veriefied: false
  - task:
      type: text-generation
    dataset:
      type: multilingual
      name: MGSM (6 langs)
    metrics:
    - name: pass@1
      type: pass@1
      value: 48.2
      veriefied: false
base_model:
- ibm-granite/granite-3.0-8b-instruct
---

# Disclaimer and Requirements

This model is a clone of [**ibm-granite/granite-3.0-8b-instruct**](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~6GB in storage and potentially ~9TB in data transfer **monthly**.

### Requirement

In order to use the model, ZipNN is necessary:
```bash
pip install zipnn
```
### Use This Model
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
from zipnn import zipnn_hf

zipnn_hf()

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="royleibov/granite-3.0-8b-instruct-ZipNN-Compressed")
pipe(messages)
```
```python
# Load model directly
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from zipnn import zipnn_hf

zipnn_hf()

model = AutoModelForCausalLM.from_pretrained(
    "royleibov/granite-3.0-8b-instruct-ZipNN-Compressed", 
    device_map="auto", 
)
tokenizer = AutoTokenizer.from_pretrained("royleibov/granite-3.0-8b-instruct-ZipNN-Compressed")
```
### ZipNN
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.

To compress the cached model, simply run:
```bash
python zipnn_compress_path.py safetensors --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
```

The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).

To decompress manualy, simply run:
```bash
python zipnn_decompress_path.py --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
```

<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
<!-- ![image/png](granite-3_0-language-models_Group_1.png) -->

# Granite-3.0-8B-Instruct

**Model Summary:**
Granite-3.0-8B-Instruct is a 8B parameter model finetuned from *Granite-3.0-8B-Base* using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.

- **Developers:** Granite Team, IBM
- **GitHub Repository:** [ibm-granite/granite-3.0-language-models](https://github.com/ibm-granite/granite-3.0-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite 3.0 Language Models](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf)
- **Release Date**: October 21st, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.0 models for languages beyond these 12 languages.

**Intended use:** 
The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.

*Capabilities*
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases

**Generation:** 
This is a simple example of how to use Granite-3.0-8B-Instruct model.

Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
pip install zipnn
```
Then, copy the snippet from the section that is relevant for your use case.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from zipnn import zipnn_hf

zipnn_hf()

device = "auto"
model_path = "royleibov/granite-3.0-8b-instruct-ZipNN-Compressed"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens, 
                        max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
```

**Model Architecture:**
Granite-3.0-8B-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.

| Model                     | 2B Dense | 8B Dense     | 1B MoE | 3B MoE |
| :--------                 | :--------| :--------    | :------| :------|
| Embedding size            | 2048     | **4096**     | 1024   | 1536   |
| Number of layers          | 40       | **40**       | 24     | 32     |
| Attention head size       | 64       | **128**      | 64     | 64     |
| Number of attention heads | 32       | **32**       | 16     | 24     |
| Number of KV heads        | 8        | **8**        | 8      | 8      |
| MLP hidden size           | 8192     | **12800**    | 512    | 512    |
| MLP activation            | SwiGLU   | **SwiGLU**   | SwiGLU | SwiGLU |
| Number of Experts         | —        | **—**        | 32     | 40     |
| MoE TopK                  | —        | **—**        | 8      | 8      |
| Initialization std        | 0.1      | **0.1**      | 0.1    | 0.1    |
| Sequence Length           | 4096     | **4096**     | 4096   | 4096   |
| Position Embedding        | RoPE     | **RoPE**     | RoPE   | RoPE   |
| # Paremeters              | 2.5B     | **8.1B**     | 1.3B   | 3.3B   |
| # Active Parameters       | 2.5B     | **8.1B**     | 400M   | 800M   |
| # Training tokens         | 12T      | **12T**      | 10T    | 10T    |

**Training Data:** 
Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf) and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).

**Infrastructure:**
We train Granite 3.0 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs while minimizing environmental impact by utilizing 100% renewable energy sources.

**Ethical Considerations and Limitations:** 
Granite 3.0 Instruct Models are primarily finetuned using instruction-response pairs mostly in English, but also multilingual data covering eleven languages. Although this model can handle multilingual dialog use cases, its performance might not be similar to English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. While this model has been aligned by keeping safety in consideration, the model may in some cases produce inaccurate, biased, or unsafe responses to user prompts. So we urge the community to use this model with proper safety testing and tuning tailored for their specific tasks.

<!-- ## Citation
```
@misc{granite-models,
  author = {author 1, author2, ...},
  title = {},
  journal = {},
  volume = {},
  year = {2024},
  url = {https://arxiv.org/abs/0000.00000},
}
``` -->