DRAK / helpers.py
Denys Rozumnyi
Public release
fc034ff
raw
history blame
6.17 kB
import numpy as np
from PIL import Image as PImage
import io
from scipy.spatial.distance import cdist
from scipy.optimize import linear_sum_assignment
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def to_K(f, cx, cy):
K = np.eye(3)
K[0,0] = K[1,1] = f
K[0,2] = cx
K[1,2] = cy
return K
def quaternion_to_rotation_matrix(qvec):
qw, qx, qy, qz = qvec
R = np.array([
[1 - 2*qy**2 - 2*qz**2, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw],
[2*qx*qy + 2*qz*qw, 1 - 2*qx**2 - 2*qz**2, 2*qy*qz - 2*qx*qw],
[2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw, 1 - 2*qx**2 - 2*qy**2]
])
return R
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
mu_target = target_verts.mean(axis=0)
mu_in = verts_to_transform.mean(axis=0)
std_target = np.std(target_verts, axis=0)
std_in = np.std(verts_to_transform, axis=0)
if np.any(std_in == 0):
std_in[std_in == 0] = 1
if np.any(std_target == 0):
std_target[std_target == 0] = 1
if np.any(np.isnan(std_in)):
std_in[np.isnan(std_in)] = 1
if np.any(np.isnan(std_target)):
std_target[np.isnan(std_target)] = 1
if single_scale:
std_target = np.linalg.norm(std_target)
std_in = np.linalg.norm(std_in)
transformed_verts = (verts_to_transform - mu_in) / std_in
transformed_verts = transformed_verts * std_target + mu_target
return transformed_verts
def update_cv(cv, gt_vertices):
if cv < 0:
diameter = cdist(gt_vertices, gt_vertices).max()
# Cost of adding or deleting a vertex is set to -cv times the diameter of the ground truth wireframe
cv = -cv * diameter
return cv
def my_compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv_ins=-1/2, cv_del=-1/4, ce=1.0, normalized=True, preregister=True, single_scale=True):
'''The function computes the Wireframe Edge Distance (WED) between two graphs.
pd_vertices: list of predicted vertices
pd_edges: list of predicted edges
gt_vertices: list of ground truth vertices
gt_edges: list of ground truth edges
cv_ins: vertex insertion cost: if positive, the cost in centimeters of inserting vertex, if negative, multiplies diameter to compute cost (default is -1/2)
cv_del: vertex deletion cost: if positive, the cost in centimeters of deleting a vertex, if negative, multiplies diameter to compute cost (default is -1/4)
ce: edge cost (multiplier of the edge length for edge deletion and insertion, default is 1.0)
normalized: if True, the WED is normalized by the total length of the ground truth edges
preregister: if True, the predicted vertices have their mean and scale matched to the ground truth vertices
'''
pd_vertices = np.array(pd_vertices)
gt_vertices = np.array(gt_vertices)
pd_edges = np.array(pd_edges)
gt_edges = np.array(gt_edges)
cv_del = update_cv(cv_del, gt_vertices)
cv_ins = update_cv(cv_ins, gt_vertices)
# Step 0: Prenormalize / preregister
if preregister:
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
# Step 1: Bipartite Matching
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
row_ind, col_ind = linear_sum_assignment(distances)
print(row_ind, col_ind)
# Step 2: Vertex Translation
translation_costs = np.sum(distances[row_ind, col_ind])
# Step 3: Vertex Deletion
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
deletion_costs = cv_del * len(unmatched_pd_indices)
# Step 4: Vertex Insertion
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
insertion_costs = cv_ins * len(unmatched_gt_indices)
# Step 5: Edge Deletion and Insertion
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if len(edge)==2 and edge[0] in row_ind and edge[1] in row_ind]
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges]))
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges]))
# Delete edges not in ground truth
edges_to_delete = pd_edges_set - gt_edges_set
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))]
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete if len(edge) == 2)
# Insert missing edges from ground truth
edges_to_insert = gt_edges_set - pd_edges_set
insertion_edge_costs = ce * sum(np.linalg.norm(gt_vertices[edge[0]] - gt_vertices[edge[1]]) for edge in edges_to_insert if len(edge) == 2)
# Step 5: Calculation of WED
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
print(translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs)
if normalized:
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
WED = WED / total_length_of_gt_edges
# print ("Total length", total_length_of_gt_edges)
return WED