File size: 1,911 Bytes
3a25869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb37e4
 
 
3a25869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9794d2a
3a25869
 
 
 
 
 
 
c770099
24b1815
c681d73
c7d3079
60d6511
84e8a2a
9794d2a
0416426
acb37e4
3a25869
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_keras_callback
model-index:
- name: s-man2099/fblc-2500
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# s-man2099/fblc-2500

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.7399
- Validation Loss: 3.3678
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-06, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': True}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.5482     | 3.3770          | 0     |
| 3.3327     | 3.3388          | 1     |
| 3.2120     | 3.3209          | 2     |
| 3.1087     | 3.3167          | 3     |
| 3.0174     | 3.3238          | 4     |
| 2.9282     | 3.3296          | 5     |
| 2.8477     | 3.3483          | 6     |
| 2.7597     | 3.3612          | 7     |
| 2.7482     | 3.3646          | 8     |
| 2.7399     | 3.3678          | 9     |


### Framework versions

- Transformers 4.34.1
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1