|
import torch |
|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from peft import PeftModel, PeftConfig |
|
|
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
config = PeftConfig.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
model = PeftModel.from_pretrained(model, path) |
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
tokenizer.padding_side = "left" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pipeline(inputs, **parameters) |
|
else: |
|
prediction = self.pipeline(inputs) |
|
|
|
return prediction |