|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import warnings |
|
from typing import Callable, List, Optional, Union |
|
|
|
import PIL |
|
import torch |
|
from transformers import CLIPImageProcessor |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.utils import ( |
|
deprecate, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
) |
|
|
|
try: |
|
from diffusers.utils import randn_tensor |
|
except ImportError: |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
|
from .sd_model import SDModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
from typing import Callable, List, Optional, Union |
|
import PIL |
|
|
|
from transformers import CLIPImageProcessor |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from einops import rearrange, repeat |
|
|
|
|
|
class ShowNotTellPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): |
|
r""" |
|
Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
In addition the pipeline inherits the following loading methods: |
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] |
|
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] |
|
|
|
as well as the following saving methods: |
|
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
|
|
model: SDModel, |
|
safety_checker: StableDiffusionSafetyChecker = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
requires_safety_checker: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules(model=model, safety_checker=safety_checker, feature_extractor=feature_extractor) |
|
|
|
|
|
self.model.vae_scale_factor = 2 ** (len(self.model.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.model.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompts, |
|
image, |
|
num_inference_steps: int = 100, |
|
guidance_scale: float = 7.5, |
|
image_guidance_scale: float = 1.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1,): |
|
|
|
if isinstance(prompts, str): |
|
prompts = [prompts] |
|
if isinstance(prompts, list): |
|
input_ids = self.fancy_get_input_ids(prompts, self.model.text_encoder.device) |
|
else: |
|
input_ids = prompts |
|
|
|
if isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
if isinstance(image, list): |
|
preprocessed_images = self.image_processor.preprocess(image) |
|
else: |
|
preprocessed_images = image |
|
|
|
batch_size = input_ids.shape[0] |
|
|
|
|
|
device = self.model.text_encoder.device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0 |
|
|
|
scheduler_is_in_sigma_space = hasattr(self.model.noise_scheduler, "sigmas") |
|
|
|
|
|
prompt_embeds = self.encode_prompt_batch(input_ids, batch_size, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds) |
|
|
|
|
|
self.model.noise_scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.model.noise_scheduler.timesteps |
|
|
|
|
|
image_latents = self.prepare_image_latents( |
|
preprocessed_images, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
do_classifier_free_guidance, |
|
generator, |
|
) |
|
|
|
height, width = image_latents.shape[-2:] |
|
height = height * self.model.vae_scale_factor |
|
width = width * self.model.vae_scale_factor |
|
|
|
|
|
num_channels_latents = self.model.vae.config.latent_channels |
|
|
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
num_channels_image = image_latents.shape[1] |
|
if num_channels_latents + num_channels_image != self.model.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.model.unet`: {self.model.unet.config} expects" |
|
f" {self.model.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_image`: {num_channels_image} " |
|
f" = {num_channels_latents+num_channels_image}. Please verify the config of" |
|
" `pipeline.model.unet` or your `image` input." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.model.noise_scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
|
|
|
|
|
|
|
|
latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scaled_latent_model_input = self.model.noise_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) |
|
|
|
|
|
noise_pred = self.model.unet( |
|
scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, return_dict=False |
|
)[0] |
|
|
|
|
|
|
|
|
|
|
|
if scheduler_is_in_sigma_space: |
|
step_index = (self.model.noise_scheduler.timesteps == t).nonzero().item() |
|
sigma = self.model.noise_scheduler.sigmas[step_index] |
|
noise_pred = latent_model_input - sigma * noise_pred |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) |
|
noise_pred = ( |
|
noise_pred_uncond |
|
+ guidance_scale * (noise_pred_text - noise_pred_image) |
|
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if scheduler_is_in_sigma_space: |
|
noise_pred = (noise_pred - latents) / (-sigma) |
|
|
|
|
|
latents = self.model.noise_scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.model.noise_scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
latents = rearrange(latents, 'b c (s h) w -> (b s) c h w', s=self.model.cfg.sequence_length) |
|
image = self.model.vae.decode(latents / self.model.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
else: |
|
image = latents |
|
|
|
has_nsfw_concept = None |
|
do_denormalize = [True] * image.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
Note that offloading happens on a submodule basis. Memory savings are higher than with |
|
`enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
for cpu_offloaded_model in [self.model.unet, self.model.text_encoder, self.model.vae]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
if self.safety_checker is not None: |
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) |
|
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
hook = None |
|
for cpu_offloaded_model in [self.model.text_encoder, self.model.unet, self.model.vae]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
if self.safety_checker is not None: |
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.model.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.model.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_ prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.model.tokenizer) |
|
|
|
text_inputs = self.model.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.model.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.model.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.model.tokenizer.batch_decode( |
|
untruncated_ids[:, self.model.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.model.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.model.text_encoder.config, "use_attention_mask") and self.model.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.model.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.model.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.model.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.model.text_encoder.config, "use_attention_mask") and self.model.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.model.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.model.noise_scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.model.noise_scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def decode_latents(self, latents): |
|
warnings.warn( |
|
"The decode_latents method is deprecated and will be removed in a future version. Please" |
|
" use VaeImageProcessor instead", |
|
FutureWarning, |
|
) |
|
latents = 1 / self.model.vae.config.scaling_factor * latents |
|
image = self.model.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def check_inputs( |
|
self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None |
|
): |
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.model.vae_scale_factor, width // self.model.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.model.noise_scheduler.init_noise_sigma |
|
return latents |
|
|
|
def original_prepare_image_latents( |
|
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None |
|
): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
image_latents = image |
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if isinstance(generator, list): |
|
image_latents = [self.model.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = self.model.vae.encode(image).latent_dist.mode() |
|
|
|
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) |
|
additional_image_per_prompt = batch_size // image_latents.shape[0] |
|
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
image_latents = torch.cat([image_latents], dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_image_latents = torch.zeros_like(image_latents) |
|
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) |
|
|
|
return image_latents |
|
|
|
def prepare_image_latents(self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None): |
|
image_latents = self.original_prepare_image_latents(image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator) |
|
return repeat(image_latents, 'b c h w -> b c (s h) w', s=self.model.cfg.sequence_length) |
|
|
|
def fancy_get_input_ids(self, prompt, device): |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.model.tokenizer) |
|
|
|
text_inputs = self.model.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.model.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.model.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.model.tokenizer.batch_decode( |
|
untruncated_ids[:, self.model.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.model.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.model.text_encoder.config, "use_attention_mask") and self.model.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
text_input_ids = text_input_ids |
|
return text_input_ids,attention_mask |
|
|
|
def encode_prompt_batch(self, |
|
input_ids, |
|
batch_size, |
|
device, |
|
num_images_per_prompt: int=1, |
|
do_classifier_free_guidance: bool=False, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None,): |
|
encoder_hidden_states = self.model.input_ids_to_text_condition(input_ids) |
|
if self.model.cfg.positional_encoding_type is not None: |
|
encoder_hidden_states = self.model.apply_step_positional_encoding(encoder_hidden_states) |
|
prompt_embeds = encoder_hidden_states |
|
prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
if negative_prompt_embeds is None: |
|
negative_prompt_embeds = self.model.get_null_conditioning() |
|
negative_prompt_embeds = repeat(negative_prompt_embeds, 'o t l -> (b o) t l', b=batch_size) |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]) |
|
return prompt_embeds |
|
|