File size: 4,474 Bytes
3b5102b 303f742 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 3b5102b f016cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: apache-2.0
datasets:
- sajaw/Arasquad3_llama2_version2
- sajaw/GQA_llama2_version
language:
- ar
metrics:
- bertscore
pipeline_tag: question-answering
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This model is an LoRA adapter file from finetuned Llama-2-7b-hf model. This is an experimental model.
To run it, you need to:
Agree with Meta's agreements to download the Llama-2-13b-chat-hf model from here: https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
Clone this repository
Clone the Alpaca-LoRA repository from here: https://github.com/tloen/alpaca-lora
Use this command to run it: -python generate.py
--load_8bit
--base_model 'PATH_TO_YOUR_LOCAL_LLAMA_2_7B_CHAT_HF'
--lora_weights 'PATH_TO_YOUR_LOCAL_FILE_OF_THIS_MODEL'
You must agree with Meta/Llama-2's agreements to use this model.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Saja Nakhleh
- **Model type:** Question answering model
- **Language(s) (NLP):** Arabic
- **Finetuned from model [optional]:** llama-2-7b
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Paper [optional]:** Not Yet
## Bias, Risks, and Limitations
This model performs well with hetrogenius data.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
None
## How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("sajaw/llama-2-7b-RandomGPT-5K-ar")
model = AutoModel.from_pretrained("sajaw/llama-2-7b-RandomGPT-5K-ar")
tokenizer = AutoTokenizer.from_pretrained("sajaw/llama-2-7b-RandomGPT-5K-ar")
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- sajaw/Arasquad3_llama2_version2
- sajaw/GQA_llama2_version
#### Preprocessing [optional]
Context, questions and answers are concatinated with the instructions in one "message" record
#### Training Hyperparameters
- **Training regime:** NA <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
NA
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
We have used 250 samples from AraSquad as true samples to test the model
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
NA
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
F1-score, precision, recall
### Results
F1-score= 0.6818
precision= 0.6564
recall=0.7226
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
NA
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** kaggle - GPU T4 *2
- **Hours used:** 9 hours
- **Cloud Provider:** kaggle
- **Compute Region:** NA
- **Carbon Emitted:** NA
## Technical Specifications [optional]
### Model Architecture and Objective
NA
### Compute Infrastructure
NA
#### Hardware
NA
#### Software
NA
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
**APA:**
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
NA
## More Information [optional]
NA
## Model Card Authors [optional]
Saja Nakhleh
## Model Card Contact
[email protected] |