salil-malhotra
commited on
Commit
·
f517dc5
1
Parent(s):
8042e00
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +2 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
@@ -25,6 +25,7 @@ model-index:
|
|
25 |
|
26 |
|
27 |
|
|
|
28 |
# **PPO** Agent playing **LunarLander-v2**
|
29 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
30 |
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 280.98 +/- 18.72
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
25 |
|
26 |
|
27 |
|
28 |
+
|
29 |
# **PPO** Agent playing **LunarLander-v2**
|
30 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
31 |
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000021F61AE31F0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000021F61AE3280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000021F61AE3310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000021F61AE33A0>", "_build": "<function ActorCriticPolicy._build at 0x0000021F61AE3430>", "forward": "<function ActorCriticPolicy.forward at 0x0000021F61AE34C0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000021F61AE3550>", "_predict": "<function ActorCriticPolicy._predict at 0x0000021F61AE35E0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000021F61AE3670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000021F61AE3700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000021F61AE3790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000021F61AD8D20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAgIYUuA51sC9/GaBAogWdT4aqPn/BNJuTKl5lpSyWTe5iRbx8HC1lKMMgblSSrAaw2HUGsWL9dmmoeM1BusXYG7L0gga0EfncHTzE7o1dUgaUmtTfIu7urWTopXFtXLBY9SvG/n/RpeNcI70bjcq1vSVxue5Y97vURA12iLkLbbOrytk+SV42OVyxK8Pra+XeXX6APZXhdnpndSAh4I2JY/bQm33sXarpzVnDSvZX/1bO2S1t0p4mnFjmNAGC+TSTF0905Tg3RGVC4X6b6pD+UOLvKsAdeZ/5N8089fxJCLB/y7nPUk69iNihFvS99x9ki+wfYa38Rld/eF/xkNKfEzWoefsnDtWYDa0WrM2lwDux10HFpl9Wh0lGoDFu1tnGPZRnLYTX6MZ3KMGqZuaDcvYcZCfyKJ3VdNBMAJyTlKJ5giNx+9jRCil5opqfYSPSGInrOmCTtSasF8jQ6WHel8aguaLOlUomQ18hWPI4g8BYkn62+SU+usK+Wi27JlaUfdUQOe/TjZTkGkf0NZYXEoPcPcG94iy72DeKsq+lec6S5KXsvWSI3JflabUmyvh1o9WgHBoYYzPjmHCJ/zncyHbKc1+qG1Ad7XzEZLcUeasdqtsThYpX4Pu29CmzmKoQuaAxhFo4ZLXbt3SCMzxPkFR4WDFaUE/ZervcfjHx53KWrnjCA4F6ncA8FUXJYIErKYajOoMrqbedPs7ZbDepmRvPCUP/t7We0iFj1vw2FGKsjdf0OeNwbHdibbiop1B2iJytURXxxYmz1F1RIyEiwUX20PC908fEVdxJW8oO9gyXgcV+UWfu0CuNpDw7sEoFt81oo6pQe2yNFyun8JA4xK1Bq14sK/d92MAiMLdOEz8CwCf3L2ZIy02r6Az9hRBJuFVaz727HjSBhdMgn6p7Xr2lNOQBBoo+3BdlrJIW0ZstmBCMhDRns0QvUHMzrMrhPYE4dQsPMF+sxbF2Dx+MZdauzWlbcdVrdTN9d2UN0c2BBDUx6lFJ3sRZfEHLJ7OkppCs/bAyjrfHI/7sG4YvO4ZOPxrL3Y/S2KW3sIKRdvldi43SPunKhL4nktEAmKDvxP9WdP/v66LPSrUzjN5tswmHjKuUZw/avRXO3RIFBBHtEGbRqRU6RQD15DLZft0HwyfVZwN9CZ1cXarOOCQrPPn28h7KTHujKCTYg0MnWBlC9S/6XNVxNZhbIbnR4aH6a+WCrlwFn2qeDzA1pcyrxM/teWS2s1l3Y9xiXpyzjaVUJEiGtXV9BEmEstjzF+d/0EAAG2LEUW/mbxx/R43ms9HJcBeYz3ixvSNzXVerz3RT557h9g9lox5PuVWAP4aZbYE4y3+LkGQFjwea2FE68RXWjslWeyrRUlirXhMNV8/jGB9UtJgFLva7Y99573/FZ1M9R4JWxQvveKN2sp4+vON6/tKv+C2n+oYH8jJquQeFA3sWMKMS4fCbXoH+4lhkd6ktywESpdChW8eC7ScUe9v2VUwauFQtBKgCznvUBw9tfMJGTj7xfneeILl6XuUxjeyE/8PHrHcU1tVws72T9azGKjd+TgYoKiL5/+hbuQqtEWJ775Xi7oB0Fk7zwP4B3Mq08+n84Xmn0au8IG1muYj/bAzAA5/7VtqaBjw0FevbigkyxpArqXyDcLt5pvXLsKXu0+3H7ciX2vUAyrRa39boEVT52ZhrerGdv9wBvDvJaI0beMFSAZMZ1i7bPoNY2+/X9aNjwAJE4yQD4XDye69o8vGY43/jTqDE7RXePK9VA5bnFIAyfJyq/QLHtTE6VyMNOsrTQfUYKR5iv5rtlGhEnWbgOZOmzfLclPQhjTkZsCgiUZB81Zh02Rgr0w0hehkfVGJxQjn80V4kEpTK1192EY8MzlikiyDETXIJ8WjA0FO8DAG+ZdErUSVM7I+jvtBAvEhUQmnPRMmswi/ya4yCy86+4l3peuwvUHMTFaTKd0cyr1gkj3ILHIa0EaAOTH4emhwtYmTsWiJa+RJVdL2BvJplVrLawbYJfSFsh+ZWLcxVKsyeTkhdn48AAd0qad+BX44rBH7VN24yYrn/YK0AyDS1afAw7WbgS1EqqPNkBAGju0sm+aHL7xR+eAK/MnKaFQSIu5rIB2klOhv4uiNWDGrZhqshF8/IJ4s0bYYsTBzJaYdAFHqSxRz6LI5QEEHnSQCrZcpIsKAd2/AZ3lEoNgroxtmvSyLdElXSWlqqmDFIERLxDWyXHCOXOShzQgf4xCPovCkVhv/14ASMzwPLCeLM6RwDWiiuBHAeFmsH43GHhVa1nUqT/Xjc5jqoCz3yJgBQeAP3DUz9jYvc2aO0CiEAyKcIgicZpehq+AK+iVoGgqvTF7ez3+VJo8b1xI0LkxyTgSrOvQpW0K6D7gEFPNGCmTL+2vDfD69UP8UWUT+0EGDR/fo/LGG5hXDIDBGwPsDc+YS9bUxDWiCz31Lq9VPoJfZGAE6AlOB9NxCX+0MW8BACF6LzIcHDoYU5XPte2muwb/IoRES7qkesxmC6aRTyD0J7SpPDETz4gkxDa/06fsq6JBKkk9nL9xjAnMRfTZ1l/PFSPyw97s0IiCjhw9qLZ0AMTypdVf70ZbnzbOxH+b/RQLhKPXJIv0YdDd+VgpKEoyCaZ6DdKkeTCTJeukL/v2p+zeatD9I6wB3zpZd7uAxAXB4p0C70QLSOZV8tS8NBkKqlT4wMuY1f3KJFhOfnHbQPtah01DoLU6LVnxh9raXLKqX6QzrGlqhU/Z37WG+2k6Qq6UsqqX/Pl6cpKGT8ZHDOExab387CTCIc7tar9kFjWOS1i5utrKI1dp4PFpWD4F0UyRSVAbdqt+foVuMrgNrjS/+K/yYhXdSr5sQLohS78a0616L1FEkb1R257ifBU630BWvKrdhRNxZykeG5Wb0HaOcQNdvnJ+aGzewRdbU+qPuvW4evru1Iu6Udygxr3hQmzHu5OgSgSYPL9t3z9DCXr+M+nrOCzX0vBepdjMNEOkalFDsWi28yzcNbFGFh3OZ+gZpifvCh5NOS0tX37m/VxYc2evsssjjXSncfOSX8n+LCaD3DS8UAIfaoOOt6QmLfpgg7Yj79GjqLFxoKDOKeB0gbvul2ucu4bsa7lopQZKQ2a2fpx5EJOC8mXmjAh0CDui42kLPSig532rH8gEyZh6/2BJZxpN2x+rfQhmRDsInKHpvqkleyjkpU+2JTilM+NqGMYVa0RqXiA2btczw10/F5OCk9vIr3N8kS0alw1LLdbWewJi82llzOwZGZ76p4VmCNyEtfAk4wz3K4ER0RCG02XHrBA9q/qe5Us6ckxh78UWNyMZBJlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUSxx1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652303687.7713685, "learning_rate": 0.0003, "tensorboard_log": "tmp/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbG9DopwC+6+WzGOg8LZzYXPT86+tHluQAAgD8AAIA/zdCdPFyjJrpG5xk59zbctcqzMDoPxC64AACAPwAAgD8zi7O79nKYP52NSbwvwRu/CrFtvILHjj0AAAAAAAAAAJqRprt7FIc3qtXTOt55EzV7DCA7sj8BugAAgD8AAIA/mvtOPcOFDbpeV1Y4HyAStVi0uTv7g3q3AACAPwAAgD8zmxQ7XONYuo9pHTtEu601MPwAuH7ONboAAIA/AACAP81RZz0KFwO5nVPmvIDQcTQn46Q7iFz+swAAgD8AAIA/mhAmvSkoZ7qwHF86SZ6ENRTxQbpsJoC5AACAPwAAgD8aq1O94TibPcMt4L3sJFG+x0sRvtAoWb0AAAAAAAAAAA36oT32jEy6AsaGO+uujjjF7pk62poeugAAgD8AAIA/MxXavClQObpTRJg7aUYeONO5MDpKs8m3AACAPwAAgD+A1xW9KYBmurNlkjud1Og4+Fs3Osw+LroAAIA/AACAP3CC374r7GU/LJivvnpHEr89Lea+Wie4vAAAAAAAAAAAM0OVPbFl1z1K8le4YBd4vqf+szzj+ne8AAAAAAAAAADAbpi95QGDP0fOi74kpR2/J4givciUPrwAAAAAAAAAAAZCj761R4k+WN7RPgDjhb5uiR69+72bPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIlD9g0jqYkCUhpRSlIwBbJRN6AOMAXSUR0CcMJJqqOtGdX2UKGgGaAloD0MIQ/6ZQXxASUCUhpRSlGgVS6xoFkdAnDMnoxHoYHV9lChoBmgJaA9DCCEHJcy0dWJAlIaUUpRoFU3oA2gWR0CcNKT9KmKqdX2UKGgGaAloD0MIF3/bEyTpaUCUhpRSlGgVTegDaBZHQJw3GE4//vR1fZQoaAZoCWgPQwgOv5tu2WdkQJSGlFKUaBVN6ANoFkdAnEDnCKrJbXV9lChoBmgJaA9DCG/W4H3V/GdAlIaUUpRoFU3oA2gWR0CcQanYg7o0dX2UKGgGaAloD0MILjpZaj0qZ0CUhpRSlGgVTegDaBZHQJxC2oIfKZF1fZQoaAZoCWgPQwggtYmT+wNOwJSGlFKUaBVNSwJoFkdAnEMDvNNahnV9lChoBmgJaA9DCEmfVtGfUGZAlIaUUpRoFU3oA2gWR0CcSFRSgoPTdX2UKGgGaAloD0MIaoZUUTy8ZUCUhpRSlGgVTegDaBZHQJxI+UD+zdF1fZQoaAZoCWgPQwitiJro8+tRQJSGlFKUaBVLwWgWR0CcS7rZ8KG+dX2UKGgGaAloD0MIy5wui4kdO0CUhpRSlGgVS7poFkdAnEyY+W4Vh3V9lChoBmgJaA9DCGGm7V9ZamhAlIaUUpRoFU3oA2gWR0CcTl7btZ3cdX2UKGgGaAloD0MI7upVZPSQYkCUhpRSlGgVTegDaBZHQJxOugvlEJB1fZQoaAZoCWgPQwiKPEm65ghkQJSGlFKUaBVN6ANoFkdAnE9Y1+AmRnV9lChoBmgJaA9DCJDZWfTOqmVAlIaUUpRoFU3oA2gWR0CcT2radtl7dX2UKGgGaAloD0MIwoTRrGxxQsCUhpRSlGgVTQgBaBZHQJxQD8aXKKZ1fZQoaAZoCWgPQwie0OtPYodiQJSGlFKUaBVN6ANoFkdAnF0iKWLP2XV9lChoBmgJaA9DCPN0riglz2ZAlIaUUpRoFU3oA2gWR0CcXgNgBtDVdX2UKGgGaAloD0MIpkV9kjt/ZUCUhpRSlGgVTegDaBZHQJxkrU4JeE91fZQoaAZoCWgPQwgbf6KyYfBnQJSGlFKUaBVN6ANoFkdAnGcpSvTw2HV9lChoBmgJaA9DCKd1G9R+z2JAlIaUUpRoFU3oA2gWR0CcaG1stTUBdX2UKGgGaAloD0MIKEnXTL7MaECUhpRSlGgVTegDaBZHQJxqstqYZ2p1fZQoaAZoCWgPQwgbEYyDy7dmQJSGlFKUaBVN6ANoFkdAnHUWTot+TnV9lChoBmgJaA9DCG/Tn/3ITGBAlIaUUpRoFU3oA2gWR0Ccffa7VawEdX2UKGgGaAloD0MI8NsQ4zWkZkCUhpRSlGgVTegDaBZHQJx+xOIqLCN1fZQoaAZoCWgPQwguHAjJgkFlQJSGlFKUaBVN6ANoFkdAnKlPJA+pwXV9lChoBmgJaA9DCONsOgK4CGVAlIaUUpRoFU3oA2gWR0CcqlaAFxGUdX2UKGgGaAloD0MIAn6NJMFgY0CUhpRSlGgVTegDaBZHQJysWk2xY7t1fZQoaAZoCWgPQwgtJ6H0BcJlQJSGlFKUaBVN6ANoFkdAnKzet0V8C3V9lChoBmgJaA9DCFX2XRH8EGVAlIaUUpRoFU3oA2gWR0CcrX3Q2MsIdX2UKGgGaAloD0MIvMtFfCdGYECUhpRSlGgVTegDaBZHQJytn9R77bd1fZQoaAZoCWgPQwg2j8Ngfq5qQJSGlFKUaBVN6ANoFkdAnK40vXbudHV9lChoBmgJaA9DCJC93v3xbmVAlIaUUpRoFU3oA2gWR0CcvQzH0btJdX2UKGgGaAloD0MIeAyP/SzXZ0CUhpRSlGgVTegDaBZHQJy+ByvLX+V1fZQoaAZoCWgPQwh2weCaO9hlQJSGlFKUaBVN6ANoFkdAnMTl8XvYvnV9lChoBmgJaA9DCCS05VwKBmVAlIaUUpRoFU3oA2gWR0Ccx3/PPcBVdX2UKGgGaAloD0MIPBOaJJaJZkCUhpRSlGgVTegDaBZHQJzI1Bv73wl1fZQoaAZoCWgPQwjuW60TF85gQJSGlFKUaBVN6ANoFkdAnMseIAOrhnV9lChoBmgJaA9DCC8yAb/G8mNAlIaUUpRoFU3oA2gWR0Cc1ejfNzKcdX2UKGgGaAloD0MIzZVBtUESZkCUhpRSlGgVTegDaBZHQJzfLBAOav11fZQoaAZoCWgPQwhsdw/QfWNjQJSGlFKUaBVN6ANoFkdAnOAO1KGtZHV9lChoBmgJaA9DCDGyZI5ltWRAlIaUUpRoFU3oA2gWR0Cc43U83dbgdX2UKGgGaAloD0MIwAZEiCujY0CUhpRSlGgVTegDaBZHQJzkY2CNCJJ1fZQoaAZoCWgPQwgK16NwvTtlQJSGlFKUaBVN6ANoFkdAnOZWx2SuAHV9lChoBmgJaA9DCAdCsoAJcGRAlIaUUpRoFU3oA2gWR0Cc5saVlf7adX2UKGgGaAloD0MIuYybGmgyZ0CUhpRSlGgVTegDaBZHQJznZV4oqkN1fZQoaAZoCWgPQwi6u86G/FFkQJSGlFKUaBVN6ANoFkdAnOd3YcvM83V9lChoBmgJaA9DCOksswhF0WRAlIaUUpRoFU3oA2gWR0Cc6BxPfsNUdX2UKGgGaAloD0MIeCXJc30vUECUhpRSlGgVS7NoFkdAnO+uLrHEM3V9lChoBmgJaA9DCIygMZOo9GVAlIaUUpRoFU3oA2gWR0Cc9zIk7fYSdX2UKGgGaAloD0MIxTh/EwqgYUCUhpRSlGgVTegDaBZHQJz4PJ6po9N1fZQoaAZoCWgPQwgw9IjR8wdjQJSGlFKUaBVN6ANoFkdAnQAb6xgRb3V9lChoBmgJaA9DCO/FF+3xT2VAlIaUUpRoFU3oA2gWR0CdAu8SPEKmdX2UKGgGaAloD0MIggAZOnbgXkCUhpRSlGgVTegDaBZHQJ0Ela3Zwn91fZQoaAZoCWgPQwh5k9+ik/1jQJSGlFKUaBVN6ANoFkdAnQdbgsK9f3V9lChoBmgJaA9DCAbxgR3/4GRAlIaUUpRoFU3oA2gWR0CdExj7hvR7dX2UKGgGaAloD0MIbW+3JIf1Z0CUhpRSlGgVTegDaBZHQJ0c7FHavid1fZQoaAZoCWgPQwj7H2Ct2uRkQJSGlFKUaBVN6ANoFkdAnR2/FaSs83V9lChoBmgJaA9DCFThz/DmwmVAlIaUUpRoFU3oA2gWR0CdISW2PT5PdX2UKGgGaAloD0MIuTmVDABaZECUhpRSlGgVTegDaBZHQJ0iLRCx/ut1fZQoaAZoCWgPQwiXjc75qdxlQJSGlFKUaBVN6ANoFkdAnUzwtJ4B3nV9lChoBmgJaA9DCOZatABt4GZAlIaUUpRoFU3oA2gWR0CdTXUiY9gXdX2UKGgGaAloD0MITFXa4hoQZUCUhpRSlGgVTegDaBZHQJ1OE//vOQh1fZQoaAZoCWgPQwgF3V7SGP9iQJSGlFKUaBVN6ANoFkdAnU7fnfVI7XV9lChoBmgJaA9DCFzjM9k/pFBAlIaUUpRoFUvCaBZHQJ1TYifQKKJ1fZQoaAZoCWgPQwhAvRk1X105QJSGlFKUaBVLrWgWR0CdVsH1OCXhdX2UKGgGaAloD0MI7x01JkRJZ0CUhpRSlGgVTegDaBZHQJ1XKw5eZ5R1fZQoaAZoCWgPQwjz5JoCmYBnQJSGlFKUaBVN6ANoFkdAnV0nUUfxMHV9lChoBmgJaA9DCH1AoDNpmGhAlIaUUpRoFU3oA2gWR0CdXgiI+GGmdX2UKGgGaAloD0MIwYwpWOMfZUCUhpRSlGgVTegDaBZHQJ1j5LUTcqR1fZQoaAZoCWgPQwheLXdmgsBjQJSGlFKUaBVN6ANoFkdAnWZQ9eQdS3V9lChoBmgJaA9DCGWKOQg61mRAlIaUUpRoFU3oA2gWR0CdZ7msvIwNdX2UKGgGaAloD0MI6lp7n6opZ0CUhpRSlGgVTegDaBZHQJ1p2nrIHTt1fZQoaAZoCWgPQwg6IXTQJdlTQJSGlFKUaBVLrGgWR0Cdb2p2ECeVdX2UKGgGaAloD0MI3sZmRyqDZkCUhpRSlGgVTegDaBZHQJ10FMWXTmZ1fZQoaAZoCWgPQwiNRj6v+PBmQJSGlFKUaBVN6ANoFkdAnX1DgAIY33V9lChoBmgJaA9DCAfRWtHmp2VAlIaUUpRoFU3oA2gWR0Cdfg0G/vfCdX2UKGgGaAloD0MIRUlIpO09ZkCUhpRSlGgVTegDaBZHQJ2CBNFjNIN1fZQoaAZoCWgPQwjg9ZmzPoFlQJSGlFKUaBVN6ANoFkdAnYQIMfA9FHV9lChoBmgJaA9DCDWYhuGj1GNAlIaUUpRoFU3oA2gWR0CdhIyfL9uQdX2UKGgGaAloD0MI6zao/VYxaECUhpRSlGgVTegDaBZHQJ2F9vVEuxt1fZQoaAZoCWgPQwh/ox03/D1hQJSGlFKUaBVN6ANoFkdAnYsjLSuyNXV9lChoBmgJaA9DCKkT0ETYHWVAlIaUUpRoFU3oA2gWR0CdjhwcHWz4dX2UKGgGaAloD0MILPNWXYfwZkCUhpRSlGgVTegDaBZHQJ2OkJMQEp11fZQoaAZoCWgPQwjFcHUARFVkQJSGlFKUaBVN6ANoFkdAnZTPYvnKXHV9lChoBmgJaA9DCJKwbycRYWVAlIaUUpRoFU3oA2gWR0CdlYwpe/pMdX2UKGgGaAloD0MIBmUaTS6gZECUhpRSlGgVTegDaBZHQJ2boRSP2f11fZQoaAZoCWgPQwgHlbiOcZljQJSGlFKUaBVN6ANoFkdAnZ/JWV/tpnV9lChoBmgJaA9DCH9rJ0rCrWVAlIaUUpRoFU3oA2gWR0CdolE+gUUPdX2UKGgGaAloD0MIxqLp7GTvZkCUhpRSlGgVTegDaBZHQJ2oljurp7l1fZQoaAZoCWgPQwi+FB40u/hSQJSGlFKUaBVLtWgWR0Cdqr0gKWszdX2UKGgGaAloD0MIih9j7toqYUCUhpRSlGgVTegDaBZHQJ2tbnoxHoZ1fZQoaAZoCWgPQwhSZRh3g8JRQJSGlFKUaBVLq2gWR0Cds2WGRFI/dX2UKGgGaAloD0MIBwq8k08gXECUhpRSlGgVTegDaBZHQJ22/yH2ys11fZQoaAZoCWgPQwiNmq+SD3NiQJSGlFKUaBVN6ANoFkdAnbfmjGkvb3V9lChoBmgJaA9DCGiyf54GhEpAlIaUUpRoFUulaBZHQJ24sBhhH9Z1fZQoaAZoCWgPQwhOKhprf/tfQJSGlFKUaBVN6ANoFkdAnbxpElVtGnV9lChoBmgJaA9DCLt868P6n2NAlIaUUpRoFU3oA2gWR0CdvoER8MNMdX2UKGgGaAloD0MIineAJ63vZECUhpRSlGgVTegDaBZHQJ2/BX2dupF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.995, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.18362-SP0 10.0.18362", "Python": "3.8.8", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.20.1", "Gym": "0.19.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000002B990BF21F0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002B990BF2280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002B990BF2310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002B990BF23A0>", "_build": "<function ActorCriticPolicy._build at 0x000002B990BF2430>", "forward": "<function ActorCriticPolicy.forward at 0x000002B990BF24C0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002B990BF2550>", "_predict": "<function ActorCriticPolicy._predict at 0x000002B990BF25E0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002B990BF2670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002B990BF2700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002B990BF2790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000002B990BE8D20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAZ1ZBEtlUEFqYpgxCvBBDr1ptx0KuNfIynFp9saEEX/XGJy8JRxPIooqKABICU/rYtovZBAQuRIzQWH6JR42uWhdXDPcqhfNpk/0kVkW4GK7a7pQ80Lo47lnhkUDPc5AiHtCLJa4aTeBI2wDDSYsFZ8V44wq2GpKYOy+rGxXp9usX1BGWkYCW5WdFg/aNKM64IrYBvgfILl+ZNx8ruwqF6dGHomTXlEtkldacrKkyl7ZKpfRCt8BJTZE+IKudrgTZ8CviSZP+ihLke4bUQkb6rmys06LMoUlrGq5oHdqdMlSAuWucV1NoJTrkfh7t7FDgjw4qTwl1Wg7ePUjNO5CDxF5XBCjvLMyGbTRw2/Yv3wmyBsEsp6ZD1yBjPwxHPUa6G7NfL7Tjliq2/JZ01OTyGfh0VTTxH7LyqcLixZo4M3Gk1A46fILodhvoQmR5T3xyZ3to4kO4GX6GArfvlSrR9dXkdn6HTqZJdZjZsAUiZUAFO0pjgUCt1nM+13d3DWu06/Liov25MKJn1KARCQxEY0g0GCm+jKVkF9L9im2WPoiQADrCYLkSSktK0XosekYoQJxdjJKtB/MmaeZu8QCC4GJv4CeWPUZAYdC7jypOF9lTERZENtLnw3D3JxvkpabY40Dd0KVYeMXUUGpeZAKLZlVJNcO+TBrUS9H0jfNtRf5sVzqmkbt5W905T2hn1jCRyz+hvZHE7me1F0YJetGHtf323GLqIMvkEmZXahVGXxnsBRg/sehTMOEYVnh330x4cZzKp56IGPI6gBFkUI4HpYPMFcSEBE9l8pex19BrywT4tFs0AhkkUPLsAs5W0yB0tn2vuMdxktT1/DPBTK2YumixUrm1wV8+bZzbNsbzZ2IEQmr9KvtI2f16jYBNHXZrb8nmQlksSi4gnmDIdLmolnSL73AXQLRfHYhX/FhCpOBT2WbaDZ91wQMkq1mEMffB033bIcSBiXtjMdBwYXN/aflTDoew7wtnS2CMm1k8K/zXOARtnCgZlsU87TsvzDnaqpnShL1P5ZmYj6X/ilK7s+Vl1kHUYQTLPMmq0z6GGF7IpYyLUO7B067PUwHQbByvm9dogRu/8iERuuGWvrBEDXF49nAEE8diSfnwg4AwE5fidYmP8j6nWI1QMh7+Dom1ltU+nVVFovs5UJzp7Iwp7j/WS0GVEYyuszQHeeHs5vMowT9Vv4Hw8FoOJIjWVK+Btgw3KhVjq+MCcrXcUJpHFl676u7UUnkNjNAfwJSEeTZgllQx9owHqb7CY61C+LrK/VvrKTBDaKM/2v0TF9iIrJHNjGurcWUfPl69K2RYT0FKcAmXvsZQ+N7zcVM3k6C0dYpr8siaCW23D0M0JOCfXfRFtRofjQWddjIOL36VRG7QzPaKSYUwRPv2NCcfctiN5i0VcM7PdTVrjl0m8xtjDXWyGcOretsZpgxjUZPN7AIUiPyHEzfOkiuipV0QZLv243i/zd9zvqj4mO1Q+FiL39wMDJT6kJCWafJ5qXMBmSzp2eJtfJnnhR2IkXPk+gK9QczfccnBdbuz3km6Mcrhb5JanzqPU95lYDaCu6VWuM22McNN/hLozdjhR2NI8uUz5Q13J+qb0pyHS9kWcpmnlI72w9I2zS9KBGoJqkacALAAVLaUHLAJoQlR6fXi1XV/UCPbjqv+vWiN0VnyWQu78IRFTM0/qBfSlvc9MRrnDosQ8nw6OuTfhS6J+Qbwl9pugaC9/XSeeJjjZLShnj4HJzv5/vAxQ4BQmu0W7Ket6wAJd3W5gLjIKqB0XlQJAdPr0kqRsZ32RhMczu8lcbFnM+i/uV/r44JjoqpgNSwWNPB/uD1HRsVNiRjckHt8B89DoVj70Ki1bCKXqUpt3dsy65jN8fJDhmKyrMI5oWJKWNYzSGNvCRl+XDBkVvtHmN9DpaNDkHw5PijoQFWsOsAS0i/VpkLm/BxTxUijY6I0weG2RUi2rqH71Oe98HhV3w2/MXresofPGNRxPqap7pgFnw8wzH0cWm1UVFE+JUPTI5BpG3W4EsbDTRaZ0yxm5SPyV4tv+Qy71ZILZPfwMekjnU4DIhv6H9rEx+d8gjWAusL306LERL5ELYJ35afGf1VJ2IdfFHrrOqWnv4VpBdeHjLVz9zMnqRQsyYCDAuxB/gQlXSgns6aQltBFVGJORFvJb8KueAgDrdFLQjul7OISPM1Ok4mPbOP1admzaU5kohO41ZaefoYZmkikr10ndUEDLiDKHlsXJgicFZhiG+VX0+WNiVzlOH5Ie2quPh8vudEDEgL1MBJRw9OyvZHm4NObgSwFzf9b/oYcBSAXHbxwUUNy69vQc+HJrjqs0KXxe9dgV/Cxor18tBrrFTHY8aDTTlHisLR6vqmcnVPUj/brzM5qaLkgivpnrbrXCN7XnRrzkSTsxfIpC/NtvNVvQYar1xFZgddGUDf+b3WLoRTxBWNZ3T5h1bqZ96Ctx9Qz8Mn0RrIQgFEZ5D3ayBsfTQqac83Lc2DdxXmsnMmr0MZpCmwPkY/ERbxdFuUJLXZTZ1yd57SO4k3zbtojPCcXxhWKuE/nqiU86Spbqz0MMe0i9pOnwdkcaa7+4vGSJfa/zyQ8rc752CD4O0UfRS0JW2B2rZCzhYuI+2+IYRa9SfyEaVy4xsWM4PXiWQNaetztiHR68obBb+bWIB9hwYSJwyu/h/P2c5NwwSBL3t2VIxM37HBWMKjJ9ku4gKMF3vN/9ccq+mRELVnYUa0vg1lS4y2QPz0LHIqJmg2FnqUvI6JfImA6fcbvzYAzaNQPRO/3Kt3dICjccEWQ7GZ7IlpH+2a3Ehyysrs+4KVMnbUL+A1z/iOf6GndlKQMAFmsLpwjigCFC+hr/L9RCdSPzFQGWPbsgDBwtUJy8SZUxZ3stmhkKxsqm6bLeu8r1RLDsiESOess239+8iwXSd5PGMHs6nWiGCdYAZXuyKXafdAkl4Lpw27qA+8WTY/lB4BEbwNVa9a9hscGDWr7OZRpG+z6DMQalyoyF5vD/pVK9rGp0MJlWddOgLNRfaRfEecoyUUGHK9uB6kh/Qe4CpMku4gyoweO099LtRFfDZes4Km/nP850PM0q2Vxpyo3j3XX0FwkrTxuuTUk3vcbSP3CsELITIJlwzBzHZz7+Y/jM7yn8YwMHPPqEQC9plht8J7dW4EXiBjNmFQoSKheHw2h6JKs4Ly2rGpw0haEbEG+ic/D1Jnmrt1E30WOAaJIJo8D/n78JosME4TO4PHHFqAnSapM4EwVwhSqWckNw8c/hs3ooLNGO10PMkoCqcf4jdsCO5z1AV1UHkIbBHIzgLcP3ys0nHfElGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652307227.1156774, "learning_rate": 0.0003, "tensorboard_log": "tmp/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObZw72Bdcc9eAzJPgEzkb6/zbg9/fxGPgAAAAAAAAAAZq4xPIVcl7tW6GW+ig+fPN5I9zy5/Ya9AACAPwAAgD8zswY7VZ6nPgLGgb35iMm+6ZZQu1M6+LsAAAAAAAAAABpnOb3JI2c9TsVMvP+6h763A2i9C8mIPAAAAAAAAAAAjV7uPdivnj4bfRe+bdi2vtILBD0FUtK8AAAAAAAAAAB6VoE+P0M3P1iQYj5y4BO/0Cm/PgeEKbwAAAAAAAAAAM0QFz1D3km8dmEpve3OiTxxYLA9bgRivQAAgD8AAIA/M1E/PEWNMz/yim+5H1YNv73RVTz+hiW9AAAAAAAAAADmf4+9jyY1up0UaDqSHss1y62POyu5hrkAAAAAAAAAAFp7Kj7BuiA/elLfvLMTDb/v8ZI+al3KvQAAAAAAAAAATZ3BvbGyAT8i3Q09YzwMv50DhL2Li+M8AAAAAAAAAACm0Jw9uB7KuVcLrjhKlb61pboKu5tvyrcAAIA/AACAPzPvmb0aVZ8/SeiRvqELHr/ypTu98Bw1vQAAAAAAAAAAWuWQPbsEnD/SjZs+dJIpv+HCKj5m0QM+AAAAAAAAAABix4e+adQiP4WFWr4uMBa/5LuVviCaC70AAAAAAAAAAJoO4b0SVV4+SuNRPrAnw75n6Q29TfrAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfzDw3Pt9ckCUhpRSlIwBbJRLxYwBdJRHQKWvxsl9jPR1fZQoaAZoCWgPQwiJ0Ag2blRyQJSGlFKUaBVL7WgWR0Clr+Ys3AEddX2UKGgGaAloD0MIjnkdcUjrckCUhpRSlGgVS+JoFkdApbCCSDAaenV9lChoBmgJaA9DCPa1LjUCQXNAlIaUUpRoFUvLaBZHQKWwerMC9yt1fZQoaAZoCWgPQwiRDDm2HplvQJSGlFKUaBVLu2gWR0ClsMixeLNwdX2UKGgGaAloD0MIXJNuS+R4ckCUhpRSlGgVS+doFkdApbDZ2r4nGHV9lChoBmgJaA9DCEIKnkLuQXBAlIaUUpRoFUvIaBZHQKWw2j/Mnqp1fZQoaAZoCWgPQwhWRE30+RxwQJSGlFKUaBVLt2gWR0ClsT1Kf4ATdX2UKGgGaAloD0MI1ub/VccZcUCUhpRSlGgVS7poFkdApbFN98Z1m3V9lChoBmgJaA9DCOcXJegvAXRAlIaUUpRoFUvaaBZHQKWxZu9eyAx1fZQoaAZoCWgPQwgN+z2xjqtxQJSGlFKUaBVL+2gWR0ClsWrLhaTwdX2UKGgGaAloD0MIJAnCFdAxckCUhpRSlGgVS8RoFkdApbHcEq2BrnV9lChoBmgJaA9DCM2wUdbvl3FAlIaUUpRoFUvHaBZHQKWx9RMvh611fZQoaAZoCWgPQwi77Ned7npwQJSGlFKUaBVLtGgWR0ClslZUcXFcdX2UKGgGaAloD0MI6pPcYZNEcUCUhpRSlGgVS81oFkdApbKSoAGSp3V9lChoBmgJaA9DCArbT8Y473FAlIaUUpRoFUvTaBZHQKWykh2W6bx1fZQoaAZoCWgPQwjYuWkzTihxQJSGlFKUaBVL22gWR0ClsrjLB9CvdX2UKGgGaAloD0MIXmVtU7yOckCUhpRSlGgVS8NoFkdApbMiOWBz3nV9lChoBmgJaA9DCHtmSYBaGXFAlIaUUpRoFUvcaBZHQKWzi5wwTM91fZQoaAZoCWgPQwjNc0S+C5JxQJSGlFKUaBVL0mgWR0Cls7qZDzAfdX2UKGgGaAloD0MIh8Jn62DMcECUhpRSlGgVS8poFkdApbQId4mkWXV9lChoBmgJaA9DCCR9WkV/33BAlIaUUpRoFUvvaBZHQKW0JIMjNY91fZQoaAZoCWgPQwjaqE4HssJzQJSGlFKUaBVLxGgWR0CltDEfDDTCdX2UKGgGaAloD0MI7Sx6p0I3cUCUhpRSlGgVS91oFkdApbSUFt8/lnV9lChoBmgJaA9DCErToGjesXFAlIaUUpRoFUvPaBZHQKW076YVqN91fZQoaAZoCWgPQwj9SufD889wQJSGlFKUaBVL02gWR0CltRzQeFL4dX2UKGgGaAloD0MIDRtl/WbEckCUhpRSlGgVTRoBaBZHQKW1aQiA2AJ1fZQoaAZoCWgPQwgexTnqKIpwQJSGlFKUaBVL0WgWR0CltdRWLgn/dX2UKGgGaAloD0MIH0sfuiCEcUCUhpRSlGgVS9poFkdApbYjqptJnXV9lChoBmgJaA9DCE64V+btgXJAlIaUUpRoFU1uAWgWR0CltkKh11W9dX2UKGgGaAloD0MIkbjH0kc+cECUhpRSlGgVS+JoFkdApcC7JOnEVHV9lChoBmgJaA9DCK5H4XoUI3FAlIaUUpRoFUvTaBZHQKXA7DhtLth1fZQoaAZoCWgPQwilEwmm2ktwQJSGlFKUaBVL2GgWR0ClwT8aGYa6dX2UKGgGaAloD0MI7nw/NV4xbkCUhpRSlGgVS9FoFkdApcF9+AmReXV9lChoBmgJaA9DCINorWjzQnNAlIaUUpRoFUvRaBZHQKXBpq+rU9Z1fZQoaAZoCWgPQwhXQKGevr1yQJSGlFKUaBVL4GgWR0ClwechLXcydX2UKGgGaAloD0MIidNJtrq8cECUhpRSlGgVS8VoFkdApcJLqptJnXV9lChoBmgJaA9DCJp3nKIjL3BAlIaUUpRoFUvgaBZHQKXCaU34sVd1fZQoaAZoCWgPQwiQozmysghyQJSGlFKUaBVNggFoFkdApcKhusLfDXV9lChoBmgJaA9DCI/DYP4K7FFAlIaUUpRoFU3oA2gWR0ClwqbuDzy0dX2UKGgGaAloD0MI3GeVmZJJcUCUhpRSlGgVS+VoFkdApcLvnGKhtnV9lChoBmgJaA9DCMCw/Pk2UG5AlIaUUpRoFUu/aBZHQKXDBPszEaV1fZQoaAZoCWgPQwhIbeLkvp9yQJSGlFKUaBVL+mgWR0Clw1rDhtLtdX2UKGgGaAloD0MINX12wLXncECUhpRSlGgVTbgBaBZHQKXDeCfYjB51fZQoaAZoCWgPQwjys5Hr5lFyQJSGlFKUaBVL6WgWR0Clw8gnUlRhdX2UKGgGaAloD0MIrDqrBTbRc0CUhpRSlGgVS/VoFkdApcPSXv6TGHV9lChoBmgJaA9DCHE9CtcjjXFAlIaUUpRoFUvZaBZHQKXD6YqoZQ51fZQoaAZoCWgPQwix+iMMg4xxQJSGlFKUaBVL8GgWR0ClxE4mkWRBdX2UKGgGaAloD0MIUnx8QnZjckCUhpRSlGgVS+BoFkdApcROkk8ifXV9lChoBmgJaA9DCHyA7suZFHFAlIaUUpRoFUvoaBZHQKXEoYtQKrt1fZQoaAZoCWgPQwhLOzWXGzpzQJSGlFKUaBVL1GgWR0ClxQwyIpH7dX2UKGgGaAloD0MIQuvhy4QYc0CUhpRSlGgVS/9oFkdApcUVgv114nV9lChoBmgJaA9DCOurqwJ1j3FAlIaUUpRoFUvAaBZHQKXFM/Tspod1fZQoaAZoCWgPQwgUQgddwhR0QJSGlFKUaBVL+WgWR0ClxUaInBtUdX2UKGgGaAloD0MIeVvptZlic0CUhpRSlGgVS+loFkdApcVXT/hl2HV9lChoBmgJaA9DCA3/6QaKw3JAlIaUUpRoFUveaBZHQKXFeQ9RrJt1fZQoaAZoCWgPQwigqdctQnJxQJSGlFKUaBVLwWgWR0ClxZwUxmCidX2UKGgGaAloD0MI5ujxe9vdckCUhpRSlGgVS8JoFkdApcWvLq2SdXV9lChoBmgJaA9DCMtMaf0t+HJAlIaUUpRoFUvWaBZHQKXGR0Rvm5l1fZQoaAZoCWgPQwizlgLSfiRzQJSGlFKUaBVL2GgWR0Clxmi9ytFKdX2UKGgGaAloD0MI+6wyU5qOcUCUhpRSlGgVS+1oFkdApcZ65LAYYXV9lChoBmgJaA9DCIYcW89QEnFAlIaUUpRoFUvbaBZHQKXG6fp2U0N1fZQoaAZoCWgPQwiJRQw7DE1qQJSGlFKUaBVNxwFoFkdApcc15B1LanV9lChoBmgJaA9DCO6zykxpQnBAlIaUUpRoFUvwaBZHQKXHh+YMOPN1fZQoaAZoCWgPQwiZ8Ev9PCNuQJSGlFKUaBVL1WgWR0Clx53H7xd6dX2UKGgGaAloD0MImfIhqJrvckCUhpRSlGgVS+VoFkdApcfamwaBJHV9lChoBmgJaA9DCJCGU+am8XJAlIaUUpRoFU0rAWgWR0Clx+wn6VMVdX2UKGgGaAloD0MIBn+/mC2TcECUhpRSlGgVS+FoFkdApcgMXSBsh3V9lChoBmgJaA9DCMNHxJRI4HJAlIaUUpRoFUv1aBZHQKXIJI0ZWJd1fZQoaAZoCWgPQwhRobq5eFd0QJSGlFKUaBVL8GgWR0ClyCzRYzSDdX2UKGgGaAloD0MIz4b8M0NAckCUhpRSlGgVS+NoFkdApch0MkQf63V9lChoBmgJaA9DCEG3lzSGwHFAlIaUUpRoFUv5aBZHQKXIlvTgEU11fZQoaAZoCWgPQwjXhLTGYJZxQJSGlFKUaBVLxGgWR0ClyNNF8XvZdX2UKGgGaAloD0MId4GSAos4ckCUhpRSlGgVS8VoFkdApcjvu3MINXV9lChoBmgJaA9DCIl7LH0oCXBAlIaUUpRoFUu8aBZHQKXJ3ctXgcd1fZQoaAZoCWgPQwjl1M4wNY1wQJSGlFKUaBVLvGgWR0ClyfX7tRekdX2UKGgGaAloD0MI1LoNaj8Wc0CUhpRSlGgVS/hoFkdApcoDyQPqcHV9lChoBmgJaA9DCHuEmiHVq3FAlIaUUpRoFUv4aBZHQKXKV7EYO2B1fZQoaAZoCWgPQwhbecn/ZEhwQJSGlFKUaBVLzWgWR0ClymZZB9kSdX2UKGgGaAloD0MI+tSxSikYckCUhpRSlGgVTZ8CaBZHQKXKg70WdmR1fZQoaAZoCWgPQwgj+N9KtvNzQJSGlFKUaBVL5GgWR0ClysgOJ+DwdX2UKGgGaAloD0MIaEC9GTXAcECUhpRSlGgVTbEBaBZHQKXKydpZfUp1fZQoaAZoCWgPQwhNaJJYEv9wQJSGlFKUaBVL2GgWR0ClyuGL9/BndX2UKGgGaAloD0MI5llJK76lcUCUhpRSlGgVS81oFkdApcr/9UCJXXV9lChoBmgJaA9DCClAFMzYmHNAlIaUUpRoFU2HAWgWR0ClyyahpQDWdX2UKGgGaAloD0MIzNQkeEOtcECUhpRSlGgVTQUBaBZHQKXLd89fTkR1fZQoaAZoCWgPQwil9bcEIFtwQJSGlFKUaBVL6WgWR0Cly+hC+lCUdX2UKGgGaAloD0MIRwVOtoFtcECUhpRSlGgVS/VoFkdApcv3V09yLnV9lChoBmgJaA9DCCbl7nO8EHFAlIaUUpRoFU0NAWgWR0ClzADfNzKcdX2UKGgGaAloD0MIQKTfvo4/cUCUhpRSlGgVS7JoFkdApcwyuIRAbHV9lChoBmgJaA9DCBjPoKH/j3FAlIaUUpRoFU1cAWgWR0ClzFtZFG5MdX2UKGgGaAloD0MIRIZVvFH9cECUhpRSlGgVS9JoFkdApcxxfpljE3V9lChoBmgJaA9DCFFoWfcP425AlIaUUpRoFUu3aBZHQKXMmvfTCtR1fZQoaAZoCWgPQwhWZHRAkvhzQJSGlFKUaBVL42gWR0ClzKiaZx7zdX2UKGgGaAloD0MImgewyC8+c0CUhpRSlGgVS9toFkdApczhFEy+H3V9lChoBmgJaA9DCL68APsolHFAlIaUUpRoFUu1aBZHQKXM34wh4dJ1fZQoaAZoCWgPQwi/8bVnlkVwQJSGlFKUaBVLumgWR0ClzPmIj4YadX2UKGgGaAloD0MIDOiFO5dWcUCUhpRSlGgVS61oFkdApcz5BiTdL3V9lChoBmgJaA9DCJChYwcVlm9AlIaUUpRoFUvYaBZHQKXNKokzGgl1fZQoaAZoCWgPQwhMp3UbVB1wQJSGlFKUaBVLu2gWR0ClzTRVp9JCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2448, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.995, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.18362-SP0 10.0.18362", "Python": "3.8.8", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.20.1", "Gym": "0.19.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cf6ebc39d63edc05a5ea334ff8f8d3e105cd8518308eb594e5bd44f6c08550e
|
3 |
+
size 147072
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,25 +4,25 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "gAWVJQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////
|
26 |
"dtype": "float32",
|
27 |
"shape": [
|
28 |
8
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": "tmp/",
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,18 +66,18 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.995,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000002B990BF21F0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002B990BF2280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002B990BF2310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002B990BF23A0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000002B990BF2430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000002B990BF24C0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002B990BF2550>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000002B990BF25E0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002B990BF2670>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002B990BF2700>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000002B990BF2790>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x000002B990BE8D20>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVJQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAZ1ZBEtlUEFqYpgxCvBBDr1ptx0KuNfIynFp9saEEX/XGJy8JRxPIooqKABICU/rYtovZBAQuRIzQWH6JR42uWhdXDPcqhfNpk/0kVkW4GK7a7pQ80Lo47lnhkUDPc5AiHtCLJa4aTeBI2wDDSYsFZ8V44wq2GpKYOy+rGxXp9usX1BGWkYCW5WdFg/aNKM64IrYBvgfILl+ZNx8ruwqF6dGHomTXlEtkldacrKkyl7ZKpfRCt8BJTZE+IKudrgTZ8CviSZP+ihLke4bUQkb6rmys06LMoUlrGq5oHdqdMlSAuWucV1NoJTrkfh7t7FDgjw4qTwl1Wg7ePUjNO5CDxF5XBCjvLMyGbTRw2/Yv3wmyBsEsp6ZD1yBjPwxHPUa6G7NfL7Tjliq2/JZ01OTyGfh0VTTxH7LyqcLixZo4M3Gk1A46fILodhvoQmR5T3xyZ3to4kO4GX6GArfvlSrR9dXkdn6HTqZJdZjZsAUiZUAFO0pjgUCt1nM+13d3DWu06/Liov25MKJn1KARCQxEY0g0GCm+jKVkF9L9im2WPoiQADrCYLkSSktK0XosekYoQJxdjJKtB/MmaeZu8QCC4GJv4CeWPUZAYdC7jypOF9lTERZENtLnw3D3JxvkpabY40Dd0KVYeMXUUGpeZAKLZlVJNcO+TBrUS9H0jfNtRf5sVzqmkbt5W905T2hn1jCRyz+hvZHE7me1F0YJetGHtf323GLqIMvkEmZXahVGXxnsBRg/sehTMOEYVnh330x4cZzKp56IGPI6gBFkUI4HpYPMFcSEBE9l8pex19BrywT4tFs0AhkkUPLsAs5W0yB0tn2vuMdxktT1/DPBTK2YumixUrm1wV8+bZzbNsbzZ2IEQmr9KvtI2f16jYBNHXZrb8nmQlksSi4gnmDIdLmolnSL73AXQLRfHYhX/FhCpOBT2WbaDZ91wQMkq1mEMffB033bIcSBiXtjMdBwYXN/aflTDoew7wtnS2CMm1k8K/zXOARtnCgZlsU87TsvzDnaqpnShL1P5ZmYj6X/ilK7s+Vl1kHUYQTLPMmq0z6GGF7IpYyLUO7B067PUwHQbByvm9dogRu/8iERuuGWvrBEDXF49nAEE8diSfnwg4AwE5fidYmP8j6nWI1QMh7+Dom1ltU+nVVFovs5UJzp7Iwp7j/WS0GVEYyuszQHeeHs5vMowT9Vv4Hw8FoOJIjWVK+Btgw3KhVjq+MCcrXcUJpHFl676u7UUnkNjNAfwJSEeTZgllQx9owHqb7CY61C+LrK/VvrKTBDaKM/2v0TF9iIrJHNjGurcWUfPl69K2RYT0FKcAmXvsZQ+N7zcVM3k6C0dYpr8siaCW23D0M0JOCfXfRFtRofjQWddjIOL36VRG7QzPaKSYUwRPv2NCcfctiN5i0VcM7PdTVrjl0m8xtjDXWyGcOretsZpgxjUZPN7AIUiPyHEzfOkiuipV0QZLv243i/zd9zvqj4mO1Q+FiL39wMDJT6kJCWafJ5qXMBmSzp2eJtfJnnhR2IkXPk+gK9QczfccnBdbuz3km6Mcrhb5JanzqPU95lYDaCu6VWuM22McNN/hLozdjhR2NI8uUz5Q13J+qb0pyHS9kWcpmnlI72w9I2zS9KBGoJqkacALAAVLaUHLAJoQlR6fXi1XV/UCPbjqv+vWiN0VnyWQu78IRFTM0/qBfSlvc9MRrnDosQ8nw6OuTfhS6J+Qbwl9pugaC9/XSeeJjjZLShnj4HJzv5/vAxQ4BQmu0W7Ket6wAJd3W5gLjIKqB0XlQJAdPr0kqRsZ32RhMczu8lcbFnM+i/uV/r44JjoqpgNSwWNPB/uD1HRsVNiRjckHt8B89DoVj70Ki1bCKXqUpt3dsy65jN8fJDhmKyrMI5oWJKWNYzSGNvCRl+XDBkVvtHmN9DpaNDkHw5PijoQFWsOsAS0i/VpkLm/BxTxUijY6I0weG2RUi2rqH71Oe98HhV3w2/MXresofPGNRxPqap7pgFnw8wzH0cWm1UVFE+JUPTI5BpG3W4EsbDTRaZ0yxm5SPyV4tv+Qy71ZILZPfwMekjnU4DIhv6H9rEx+d8gjWAusL306LERL5ELYJ35afGf1VJ2IdfFHrrOqWnv4VpBdeHjLVz9zMnqRQsyYCDAuxB/gQlXSgns6aQltBFVGJORFvJb8KueAgDrdFLQjul7OISPM1Ok4mPbOP1admzaU5kohO41ZaefoYZmkikr10ndUEDLiDKHlsXJgicFZhiG+VX0+WNiVzlOH5Ie2quPh8vudEDEgL1MBJRw9OyvZHm4NObgSwFzf9b/oYcBSAXHbxwUUNy69vQc+HJrjqs0KXxe9dgV/Cxor18tBrrFTHY8aDTTlHisLR6vqmcnVPUj/brzM5qaLkgivpnrbrXCN7XnRrzkSTsxfIpC/NtvNVvQYar1xFZgddGUDf+b3WLoRTxBWNZ3T5h1bqZ96Ctx9Qz8Mn0RrIQgFEZ5D3ayBsfTQqac83Lc2DdxXmsnMmr0MZpCmwPkY/ERbxdFuUJLXZTZ1yd57SO4k3zbtojPCcXxhWKuE/nqiU86Spbqz0MMe0i9pOnwdkcaa7+4vGSJfa/zyQ8rc752CD4O0UfRS0JW2B2rZCzhYuI+2+IYRa9SfyEaVy4xsWM4PXiWQNaetztiHR68obBb+bWIB9hwYSJwyu/h/P2c5NwwSBL3t2VIxM37HBWMKjJ9ku4gKMF3vN/9ccq+mRELVnYUa0vg1lS4y2QPz0LHIqJmg2FnqUvI6JfImA6fcbvzYAzaNQPRO/3Kt3dICjccEWQ7GZ7IlpH+2a3Ehyysrs+4KVMnbUL+A1z/iOf6GndlKQMAFmsLpwjigCFC+hr/L9RCdSPzFQGWPbsgDBwtUJy8SZUxZ3stmhkKxsqm6bLeu8r1RLDsiESOess239+8iwXSd5PGMHs6nWiGCdYAZXuyKXafdAkl4Lpw27qA+8WTY/lB4BEbwNVa9a9hscGDWr7OZRpG+z6DMQalyoyF5vD/pVK9rGp0MJlWddOgLNRfaRfEecoyUUGHK9uB6kh/Qe4CpMku4gyoweO099LtRFfDZes4Km/nP850PM0q2Vxpyo3j3XX0FwkrTxuuTUk3vcbSP3CsELITIJlwzBzHZz7+Y/jM7yn8YwMHPPqEQC9plht8J7dW4EXiBjNmFQoSKheHw2h6JKs4Ly2rGpw0haEbEG+ic/D1Jnmrt1E30WOAaJIJo8D/n78JosME4TO4PHHFqAnSapM4EwVwhSqWckNw8c/hs3ooLNGO10PMkoCqcf4jdsCO5z1AV1UHkIbBHIzgLcP3ys0nHfElGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
26 |
"dtype": "float32",
|
27 |
"shape": [
|
28 |
8
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2506752,
|
46 |
+
"_total_timesteps": 2500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652307227.1156774,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": "tmp/",
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObZw72Bdcc9eAzJPgEzkb6/zbg9/fxGPgAAAAAAAAAAZq4xPIVcl7tW6GW+ig+fPN5I9zy5/Ya9AACAPwAAgD8zswY7VZ6nPgLGgb35iMm+6ZZQu1M6+LsAAAAAAAAAABpnOb3JI2c9TsVMvP+6h763A2i9C8mIPAAAAAAAAAAAjV7uPdivnj4bfRe+bdi2vtILBD0FUtK8AAAAAAAAAAB6VoE+P0M3P1iQYj5y4BO/0Cm/PgeEKbwAAAAAAAAAAM0QFz1D3km8dmEpve3OiTxxYLA9bgRivQAAgD8AAIA/M1E/PEWNMz/yim+5H1YNv73RVTz+hiW9AAAAAAAAAADmf4+9jyY1up0UaDqSHss1y62POyu5hrkAAAAAAAAAAFp7Kj7BuiA/elLfvLMTDb/v8ZI+al3KvQAAAAAAAAAATZ3BvbGyAT8i3Q09YzwMv50DhL2Li+M8AAAAAAAAAACm0Jw9uB7KuVcLrjhKlb61pboKu5tvyrcAAIA/AACAPzPvmb0aVZ8/SeiRvqELHr/ypTu98Bw1vQAAAAAAAAAAWuWQPbsEnD/SjZs+dJIpv+HCKj5m0QM+AAAAAAAAAABix4e+adQiP4WFWr4uMBa/5LuVviCaC70AAAAAAAAAAJoO4b0SVV4+SuNRPrAnw75n6Q29TfrAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfzDw3Pt9ckCUhpRSlIwBbJRLxYwBdJRHQKWvxsl9jPR1fZQoaAZoCWgPQwiJ0Ag2blRyQJSGlFKUaBVL7WgWR0Clr+Ys3AEddX2UKGgGaAloD0MIjnkdcUjrckCUhpRSlGgVS+JoFkdApbCCSDAaenV9lChoBmgJaA9DCPa1LjUCQXNAlIaUUpRoFUvLaBZHQKWwerMC9yt1fZQoaAZoCWgPQwiRDDm2HplvQJSGlFKUaBVLu2gWR0ClsMixeLNwdX2UKGgGaAloD0MIXJNuS+R4ckCUhpRSlGgVS+doFkdApbDZ2r4nGHV9lChoBmgJaA9DCEIKnkLuQXBAlIaUUpRoFUvIaBZHQKWw2j/Mnqp1fZQoaAZoCWgPQwhWRE30+RxwQJSGlFKUaBVLt2gWR0ClsT1Kf4ATdX2UKGgGaAloD0MI1ub/VccZcUCUhpRSlGgVS7poFkdApbFN98Z1m3V9lChoBmgJaA9DCOcXJegvAXRAlIaUUpRoFUvaaBZHQKWxZu9eyAx1fZQoaAZoCWgPQwgN+z2xjqtxQJSGlFKUaBVL+2gWR0ClsWrLhaTwdX2UKGgGaAloD0MIJAnCFdAxckCUhpRSlGgVS8RoFkdApbHcEq2BrnV9lChoBmgJaA9DCM2wUdbvl3FAlIaUUpRoFUvHaBZHQKWx9RMvh611fZQoaAZoCWgPQwi77Ned7npwQJSGlFKUaBVLtGgWR0ClslZUcXFcdX2UKGgGaAloD0MI6pPcYZNEcUCUhpRSlGgVS81oFkdApbKSoAGSp3V9lChoBmgJaA9DCArbT8Y473FAlIaUUpRoFUvTaBZHQKWykh2W6bx1fZQoaAZoCWgPQwjYuWkzTihxQJSGlFKUaBVL22gWR0ClsrjLB9CvdX2UKGgGaAloD0MIXmVtU7yOckCUhpRSlGgVS8NoFkdApbMiOWBz3nV9lChoBmgJaA9DCHtmSYBaGXFAlIaUUpRoFUvcaBZHQKWzi5wwTM91fZQoaAZoCWgPQwjNc0S+C5JxQJSGlFKUaBVL0mgWR0Cls7qZDzAfdX2UKGgGaAloD0MIh8Jn62DMcECUhpRSlGgVS8poFkdApbQId4mkWXV9lChoBmgJaA9DCCR9WkV/33BAlIaUUpRoFUvvaBZHQKW0JIMjNY91fZQoaAZoCWgPQwjaqE4HssJzQJSGlFKUaBVLxGgWR0CltDEfDDTCdX2UKGgGaAloD0MI7Sx6p0I3cUCUhpRSlGgVS91oFkdApbSUFt8/lnV9lChoBmgJaA9DCErToGjesXFAlIaUUpRoFUvPaBZHQKW076YVqN91fZQoaAZoCWgPQwj9SufD889wQJSGlFKUaBVL02gWR0CltRzQeFL4dX2UKGgGaAloD0MIDRtl/WbEckCUhpRSlGgVTRoBaBZHQKW1aQiA2AJ1fZQoaAZoCWgPQwgexTnqKIpwQJSGlFKUaBVL0WgWR0CltdRWLgn/dX2UKGgGaAloD0MIH0sfuiCEcUCUhpRSlGgVS9poFkdApbYjqptJnXV9lChoBmgJaA9DCE64V+btgXJAlIaUUpRoFU1uAWgWR0CltkKh11W9dX2UKGgGaAloD0MIkbjH0kc+cECUhpRSlGgVS+JoFkdApcC7JOnEVHV9lChoBmgJaA9DCK5H4XoUI3FAlIaUUpRoFUvTaBZHQKXA7DhtLth1fZQoaAZoCWgPQwilEwmm2ktwQJSGlFKUaBVL2GgWR0ClwT8aGYa6dX2UKGgGaAloD0MI7nw/NV4xbkCUhpRSlGgVS9FoFkdApcF9+AmReXV9lChoBmgJaA9DCINorWjzQnNAlIaUUpRoFUvRaBZHQKXBpq+rU9Z1fZQoaAZoCWgPQwhXQKGevr1yQJSGlFKUaBVL4GgWR0ClwechLXcydX2UKGgGaAloD0MIidNJtrq8cECUhpRSlGgVS8VoFkdApcJLqptJnXV9lChoBmgJaA9DCJp3nKIjL3BAlIaUUpRoFUvgaBZHQKXCaU34sVd1fZQoaAZoCWgPQwiQozmysghyQJSGlFKUaBVNggFoFkdApcKhusLfDXV9lChoBmgJaA9DCI/DYP4K7FFAlIaUUpRoFU3oA2gWR0ClwqbuDzy0dX2UKGgGaAloD0MI3GeVmZJJcUCUhpRSlGgVS+VoFkdApcLvnGKhtnV9lChoBmgJaA9DCMCw/Pk2UG5AlIaUUpRoFUu/aBZHQKXDBPszEaV1fZQoaAZoCWgPQwhIbeLkvp9yQJSGlFKUaBVL+mgWR0Clw1rDhtLtdX2UKGgGaAloD0MINX12wLXncECUhpRSlGgVTbgBaBZHQKXDeCfYjB51fZQoaAZoCWgPQwjys5Hr5lFyQJSGlFKUaBVL6WgWR0Clw8gnUlRhdX2UKGgGaAloD0MIrDqrBTbRc0CUhpRSlGgVS/VoFkdApcPSXv6TGHV9lChoBmgJaA9DCHE9CtcjjXFAlIaUUpRoFUvZaBZHQKXD6YqoZQ51fZQoaAZoCWgPQwix+iMMg4xxQJSGlFKUaBVL8GgWR0ClxE4mkWRBdX2UKGgGaAloD0MIUnx8QnZjckCUhpRSlGgVS+BoFkdApcROkk8ifXV9lChoBmgJaA9DCHyA7suZFHFAlIaUUpRoFUvoaBZHQKXEoYtQKrt1fZQoaAZoCWgPQwhLOzWXGzpzQJSGlFKUaBVL1GgWR0ClxQwyIpH7dX2UKGgGaAloD0MIQuvhy4QYc0CUhpRSlGgVS/9oFkdApcUVgv114nV9lChoBmgJaA9DCOurqwJ1j3FAlIaUUpRoFUvAaBZHQKXFM/Tspod1fZQoaAZoCWgPQwgUQgddwhR0QJSGlFKUaBVL+WgWR0ClxUaInBtUdX2UKGgGaAloD0MIeVvptZlic0CUhpRSlGgVS+loFkdApcVXT/hl2HV9lChoBmgJaA9DCA3/6QaKw3JAlIaUUpRoFUveaBZHQKXFeQ9RrJt1fZQoaAZoCWgPQwigqdctQnJxQJSGlFKUaBVLwWgWR0ClxZwUxmCidX2UKGgGaAloD0MI5ujxe9vdckCUhpRSlGgVS8JoFkdApcWvLq2SdXV9lChoBmgJaA9DCMtMaf0t+HJAlIaUUpRoFUvWaBZHQKXGR0Rvm5l1fZQoaAZoCWgPQwizlgLSfiRzQJSGlFKUaBVL2GgWR0Clxmi9ytFKdX2UKGgGaAloD0MI+6wyU5qOcUCUhpRSlGgVS+1oFkdApcZ65LAYYXV9lChoBmgJaA9DCIYcW89QEnFAlIaUUpRoFUvbaBZHQKXG6fp2U0N1fZQoaAZoCWgPQwiJRQw7DE1qQJSGlFKUaBVNxwFoFkdApcc15B1LanV9lChoBmgJaA9DCO6zykxpQnBAlIaUUpRoFUvwaBZHQKXHh+YMOPN1fZQoaAZoCWgPQwiZ8Ev9PCNuQJSGlFKUaBVL1WgWR0Clx53H7xd6dX2UKGgGaAloD0MImfIhqJrvckCUhpRSlGgVS+VoFkdApcfamwaBJHV9lChoBmgJaA9DCJCGU+am8XJAlIaUUpRoFU0rAWgWR0Clx+wn6VMVdX2UKGgGaAloD0MIBn+/mC2TcECUhpRSlGgVS+FoFkdApcgMXSBsh3V9lChoBmgJaA9DCMNHxJRI4HJAlIaUUpRoFUv1aBZHQKXIJI0ZWJd1fZQoaAZoCWgPQwhRobq5eFd0QJSGlFKUaBVL8GgWR0ClyCzRYzSDdX2UKGgGaAloD0MIz4b8M0NAckCUhpRSlGgVS+NoFkdApch0MkQf63V9lChoBmgJaA9DCEG3lzSGwHFAlIaUUpRoFUv5aBZHQKXIlvTgEU11fZQoaAZoCWgPQwjXhLTGYJZxQJSGlFKUaBVLxGgWR0ClyNNF8XvZdX2UKGgGaAloD0MId4GSAos4ckCUhpRSlGgVS8VoFkdApcjvu3MINXV9lChoBmgJaA9DCIl7LH0oCXBAlIaUUpRoFUu8aBZHQKXJ3ctXgcd1fZQoaAZoCWgPQwjl1M4wNY1wQJSGlFKUaBVLvGgWR0ClyfX7tRekdX2UKGgGaAloD0MI1LoNaj8Wc0CUhpRSlGgVS/hoFkdApcoDyQPqcHV9lChoBmgJaA9DCHuEmiHVq3FAlIaUUpRoFUv4aBZHQKXKV7EYO2B1fZQoaAZoCWgPQwhbecn/ZEhwQJSGlFKUaBVLzWgWR0ClymZZB9kSdX2UKGgGaAloD0MI+tSxSikYckCUhpRSlGgVTZ8CaBZHQKXKg70WdmR1fZQoaAZoCWgPQwgj+N9KtvNzQJSGlFKUaBVL5GgWR0ClysgOJ+DwdX2UKGgGaAloD0MIaEC9GTXAcECUhpRSlGgVTbEBaBZHQKXKydpZfUp1fZQoaAZoCWgPQwhNaJJYEv9wQJSGlFKUaBVL2GgWR0ClyuGL9/BndX2UKGgGaAloD0MI5llJK76lcUCUhpRSlGgVS81oFkdApcr/9UCJXXV9lChoBmgJaA9DCClAFMzYmHNAlIaUUpRoFU2HAWgWR0ClyyahpQDWdX2UKGgGaAloD0MIzNQkeEOtcECUhpRSlGgVTQUBaBZHQKXLd89fTkR1fZQoaAZoCWgPQwil9bcEIFtwQJSGlFKUaBVL6WgWR0Cly+hC+lCUdX2UKGgGaAloD0MIRwVOtoFtcECUhpRSlGgVS/VoFkdApcv3V09yLnV9lChoBmgJaA9DCCbl7nO8EHFAlIaUUpRoFU0NAWgWR0ClzADfNzKcdX2UKGgGaAloD0MIQKTfvo4/cUCUhpRSlGgVS7JoFkdApcwyuIRAbHV9lChoBmgJaA9DCBjPoKH/j3FAlIaUUpRoFU1cAWgWR0ClzFtZFG5MdX2UKGgGaAloD0MIRIZVvFH9cECUhpRSlGgVS9JoFkdApcxxfpljE3V9lChoBmgJaA9DCFFoWfcP425AlIaUUpRoFUu3aBZHQKXMmvfTCtR1fZQoaAZoCWgPQwhWZHRAkvhzQJSGlFKUaBVL42gWR0ClzKiaZx7zdX2UKGgGaAloD0MImgewyC8+c0CUhpRSlGgVS9toFkdApczhFEy+H3V9lChoBmgJaA9DCL68APsolHFAlIaUUpRoFUu1aBZHQKXM34wh4dJ1fZQoaAZoCWgPQwi/8bVnlkVwQJSGlFKUaBVLumgWR0ClzPmIj4YadX2UKGgGaAloD0MIDOiFO5dWcUCUhpRSlGgVS61oFkdApcz5BiTdL3V9lChoBmgJaA9DCJChYwcVlm9AlIaUUpRoFUvYaBZHQKXNKokzGgl1fZQoaAZoCWgPQwhMp3UbVB1wQJSGlFKUaBVLu2gWR0ClzTRVp9JCdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 2448,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
"gae_lambda": 0.995,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84637
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fa6c8b7c6ca7ac8bb6e97837066a5ece015983671d83433c64ac5f735a52605
|
3 |
size 84637
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eae749f03e43c07fa2890a300ea7362425c2715b10d3f24d75f1509e34432dc
|
3 |
size 43073
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.9841289387126, "std_reward": 18.719098053585626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T19:03:56.935751"}
|