ppo-lunar-lander / config.json
samos123's picture
Upload PPO LunarLander-v2 trained agent
85c0cb3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f034934eb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f034934ec20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f034934ecb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f034934ed40>", "_build": "<function ActorCriticPolicy._build at 0x7f034934edd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f034934ee60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f034934eef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f034934ef80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f034934f010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f034934f0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f034934f130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f034934f1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0349344280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684127672543818809, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBaLT3DiXK6kqqxtuOaHbIeyXi6Dm7PNQAAgD8AAIA/mmdUvIn6Yz2JQMk8s3Jyvs/zNb0e5HK8AAAAAAAAAAAASaA8SIOOulh51DcVFrwyUf3PuubF9rYAAIA/AACAPzOLm7vDiSq6AuJ0OuLAQjYIi0Y7ljCMuQAAgD8AAIA/mimNO661tbra4I25iceGtCf16Dlo5qE4AACAPwAAgD/6Kwy+bVtYP4CY7r181u2+z6RgvqJS2TwAAAAAAAAAAObKzD241pa5ClNGOQYeYzSbQb26IgZouAAAgD8AAIA/mlHOvMO5Xbo+AOC6sIEItj7Cq7gmswM6AACAPwAAgD8zI5s8Dy0evIUsJzxVuYM8mwqBPbujW70AAIA/AACAP838Qr2Eevk+voONvBkjw76djuO8EmQsuwAAAAAAAAAAMxt5u3vIhrrQD284UIONM0u7MDvmpIq3AACAPwAAgD+as/E8FGCSunKLlzWc/iEw0fe8OKP6q7QAAIA/AACAP2ZeBL0Vikg+7kFTPtqcgL4JjjE9kRepPQAAAAAAAAAAmhmwOnYoAbzN8fw36+etPGpZXb0aOJA9AACAPwAAgD/NCw+9fuyoP8KBY77Zqem+BFmOPK4XyLwAAAAAAAAAAE29i71CSXw/Ik6QvbSs8L52tmO92iKQvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGlhIZqEeySMAWyUTegDjAF0lEdAlCZ4AXEZSHV9lChoBkdAcNrTpPhybWgHTcUBaAhHQJQyhK02LpB1fZQoaAZHQGQ2L/sE7nxoB03oA2gIR0CUM5xgRbr1dX2UKGgGR0BmT8QGwA2iaAdN6ANoCEdAlDUxhlUZN3V9lChoBkdAU5PNSqEOAmgHS8RoCEdAlEA6vq1PWXV9lChoBkdAcnmIUahpQGgHTdYBaAhHQJRBBo+Ofd11fZQoaAZHQGaUoj4YaYNoB03oA2gIR0CUQiNUOuq4dX2UKGgGR0BxKyVu76HkaAdNOQJoCEdAlEQWPcSGrXV9lChoBkdAalELS/j81mgHTegDaAhHQJREje54GEB1fZQoaAZHQGEaSMcZLqVoB03oA2gIR0CURKBppN9IdX2UKGgGR0BgMarcTJyRaAdN6ANoCEdAlF5zdxhlUnV9lChoBkdAcPqfAsTWXmgHTaYDaAhHQJRhgVvddmh1fZQoaAZHQGccyGSIP9VoB03oA2gIR0CUYfo/A0sOdX2UKGgGR0Bx07in5zo2aAdNTQNoCEdAlGQ1qi48U3V9lChoBkdAY+vlJYkmhWgHTegDaAhHQJRlm8+Royt1fZQoaAZHQF+bJrLyMDRoB03oA2gIR0CUZatFa0QcdX2UKGgGR0BnfRSFXaJzaAdN6ANoCEdAlGu8abWmQHV9lChoBkdAcgoLHuJDV2gHTRsCaAhHQJRukBJZnth1fZQoaAZHQGQy4vvjOs1oB03oA2gIR0CUceUzsQd0dX2UKGgGR0ByBxPj4pMIaAdNawJoCEdAlHWBrvb48HV9lChoBkdAc2GbsniNsGgHTSsDaAhHQJR/KTbFjut1fZQoaAZHQGWwpJwsGxFoB03oA2gIR0CUf6eGO+7EdX2UKGgGR0Bnwd1KXfIkaAdN6ANoCEdAlIDc3l0YCXV9lChoBkdAcc0w/xDst2gHTS0DaAhHQJSDdIwudwx1fZQoaAZHQHDv7Nr0rbxoB01nA2gIR0CUhb+QU5+6dX2UKGgGR0BzLGL9/BnBaAdN0AFoCEdAlIc35vcafnV9lChoBkdAcLeJ9RaX8mgHTYQCaAhHQJSLKK/Efkp1fZQoaAZHQG0u01AJLM9oB03XA2gIR0CUi28cuJ1rdX2UKGgGR0BxLawB5ooNaAdNvwFoCEdAlI0x/ViF03V9lChoBkdASc/wb2lEZ2gHS7doCEdAlJPG2G7Bf3V9lChoBkdAbjEo0hvBJ2gHTZECaAhHQJSlpA/s3Q51fZQoaAZHQHBkfWxyGSJoB03jA2gIR0CUplpFCswMdX2UKGgGR0BteHAXVLBbaAdNjANoCEdAlKfKHbh3q3V9lChoBkdAaZ3icXm/32gHTegDaAhHQJSqFUlzEJl1fZQoaAZHQHFlYnSfDk5oB02ZA2gIR0CUqjQg9vCNdX2UKGgGR0BhGJ1mrbQDaAdN6ANoCEdAlKqhAfMfR3V9lChoBkdAb2USq2jO9mgHTZoBaAhHQJSrO68QI2R1fZQoaAZHQHEalcQiA2BoB00SAWgIR0CUtU35vcagdX2UKGgGR0BxheUliSaFaAdN1gNoCEdAlLVw9RrJsHV9lChoBkdAcg5h/Aj6e2gHTUgCaAhHQJS2z2exwAF1fZQoaAZHQHKd/EbYK6ZoB00iAWgIR0CUuW4u9OARdX2UKGgGR0BwbzDwYtQLaAdNWgNoCEdAlLuMmWt2cXV9lChoBkdAcgDnaWX1J2gHTVYBaAhHQJS8MMG5c1R1fZQoaAZHQHCqeJHiFTNoB02RAWgIR0CUvKWilBQfdX2UKGgGR0BzMUkD6nBMaAdNsQFoCEdAlL0PXXiBG3V9lChoBkdAcVEbr1M/QmgHTXwDaAhHQJS9YPz4DcN1fZQoaAZHQG+RfJ/5LytoB01fA2gIR0CUvy/ViF0xdX2UKGgGR0BkDOCqZML4aAdN6ANoCEdAlMKmNm16V3V9lChoBkdAcdlcjJMg2mgHTTgBaAhHQJTC4mAskIJ1fZQoaAZHQHE+H+MqBmRoB01gAWgIR0CUxIlzU7SzdX2UKGgGR0BxCHNNahYeaAdNVwFoCEdAlMUwBHTZx3V9lChoBkdAceCYqXnhbWgHTVYCaAhHQJTGgxdpqRF1fZQoaAZHQG/QnIIWxhVoB006AWgIR0CUxrB2wFC+dX2UKGgGR0Bl9CD28IzFaAdN6ANoCEdAlMzA35vcanV9lChoBkdAcFz0Xxe9jGgHTVIBaAhHQJTOSPvKEFp1fZQoaAZHQGXpk25xzaNoB03oA2gIR0CUzqK02LpBdX2UKGgGR0BvGg91U2k0aAdNmgFoCEdAlM8psoDxLHV9lChoBkdAcAWuNgjQiWgHTd8BaAhHQJTQxUuL7411fZQoaAZHQHIcrkOqebxoB03pAWgIR0CU0lc+7lJZdX2UKGgGR0Bya0FeOXE7aAdNTgFoCEdAlNSk6gdwN3V9lChoBkdAaFTB7eEZi2gHTegDaAhHQJTU4qnWJ791fZQoaAZHQHFfabjLjghoB01kAWgIR0CU6inIQvpRdX2UKGgGR0BtxTcAR02caAdNZQFoCEdAlOqC53C9AXV9lChoBkdAcA54Irvsq2gHTb8BaAhHQJTs9k9U0el1fZQoaAZHQHAnV6qsEJVoB03jA2gIR0CU7eitaIN3dX2UKGgGR0BwyvZsbedkaAdNtwJoCEdAlO+3G4qgAnV9lChoBkdAcpDxcmjTKGgHTUABaAhHQJTwCy0KJEZ1fZQoaAZHQHEtmKhtcfNoB006AmgIR0CU8aHt4RmLdX2UKGgGR0ByNuOEM9bHaAdNPAFoCEdAlPGnPVurInV9lChoBkdAb/CDQJHAh2gHTUcBaAhHQJTyakXUH6d1fZQoaAZHQG6VwZOzpotoB00RAWgIR0CU8utoSL62dX2UKGgGR0BvDy6BiCrcaAdNIAFoCEdAlPU4NqgyunV9lChoBkdAcePUC7sfJWgHTfQCaAhHQJT4RQ1rIo51fZQoaAZHQHBTqmO2iL5oB00UAWgIR0CU+Wd/8VHndX2UKGgGR0BwqY74i5d4aAdL9WgIR0CU+ZxDst03dX2UKGgGR0Bw+i8lHBk7aAdNYgFoCEdAlPoqziS7oXV9lChoBkdAcTYzZYgaFWgHTckDaAhHQJT74cXFcY91fZQoaAZHQHDotvsJIDpoB008AWgIR0CU/HFCb+cZdX2UKGgGR0Bvb0SZjQRgaAdNOwFoCEdAlP4Xx4IKMXV9lChoBkdAcdIn2ZiNKmgHTRwBaAhHQJT+XwjMV1x1fZQoaAZHQHJPiDdxhlVoB03KAmgIR0CVAYB/qgRLdX2UKGgGR0BxNX/0dzXCaAdNiQFoCEdAlQGT1GsmwHV9lChoBkdAcPZCQtBfKWgHTUEBaAhHQJUDAqBmPHV1fZQoaAZHQHBh1tCRfWtoB01iAmgIR0CVA0R/3FkydX2UKGgGR0BxiPn2ZiNLaAdNKwFoCEdAlQUpwKjSHHV9lChoBkdAcOkqgh8pkWgHTSEBaAhHQJUFzW4EwFl1fZQoaAZHQHMyauKXOW1oB01+AmgIR0CVBocL0BfbdX2UKGgGR0BwFT++/QBxaAdNKAFoCEdAlQbYr8R+SnV9lChoBkdAcECrVOKwZGgHTQMBaAhHQJUG7GVAzHl1fZQoaAZHQHFnQVfu1F9oB00vA2gIR0CVB8K6FuejdX2UKGgGR0BxCZAOavzOaAdNgQFoCEdAlQnDwH7gsXV9lChoBkdAczTaPjn3c2gHTScBaAhHQJUKXXqZ+hJ1fZQoaAZHQHEms4gieNFoB006AWgIR0CVC2JeE7GOdX2UKGgGR0BL+BsqJ/G3aAdLpWgIR0CVC7lA/s3RdX2UKGgGR0BtndV5rxiHaAdNKAFoCEdAlQ1fAwfyPXV9lChoBkdAcvDwkPczqWgHTToBaAhHQJUOIeLehwl1fZQoaAZHQHKr2SdOIqNoB01pA2gIR0CVEZ0jTrmhdX2UKGgGR0BtgcvEjxCqaAdNggFoCEdAlRLHiFTNuHV9lChoBkdAcFZgEEC/5GgHTScBaAhHQJUS5FfAsTZ1fZQoaAZHQHKv+g13t8hoB01cAWgIR0CVFNKOT7l8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}