File size: 2,102 Bytes
561a26e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- es
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- facebook/multilingual_librispeech
metrics:
- wer
model-index:
- name: Whisper Small Es - Sanchit Gandhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
args: 'config: es, split: test'
metrics:
- name: Wer
type: wer
value: 4.124340388026983
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Es - Sanchit Gandhi
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Multilingual LibriSpeech dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1024
- Wer: 4.1243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1887 | 0.2 | 1000 | 0.1329 | 5.4249 |
| 0.123 | 0.4 | 2000 | 0.1212 | 4.9639 |
| 0.1594 | 0.6 | 3000 | 0.1144 | 4.3210 |
| 0.1777 | 0.8 | 4000 | 0.1116 | 4.5379 |
| 0.2469 | 1.0 | 5000 | 0.1024 | 4.1243 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.0
- Datasets 2.6.2.dev0
- Tokenizers 0.12.1
|