TJKlein commited on
Commit
dbd0ed7
·
1 Parent(s): 5772277

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -10,7 +10,7 @@ Language model of the pre-print arXiv paper titled: "_**miCSE**: Mutual Informat
10
  The **miCSE** language model is trained for sentence similarity computation. Training the model imposes alignment between the attention pattern of different views (embeddings of augmentations) during contrastive learning. Learning sentence embeddings with **miCSE** entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. This is achieved by regularizing the attention distribution. Regularizing the attention space enables learning representation in self-supervised fashion even when the _training corpus is comparatively small_. This is particularly interesting for _real-world applications_, where training data is significantly smaller thank Wikipedia.
11
 
12
  # Intended Use
13
- The model intended to be used for encoding sentences or short paragraphs. Given an input text, the model produces a vector embedding, which captures the semantics. The embedding can be used for numerous tasks, e.g., **retrieval**, **clustering** or **sentence similarity** comparison (see example below). Sentence representations correspond to the embedding of the _**[CLS]**_ token.
14
 
15
 
16
  # Training data
 
10
  The **miCSE** language model is trained for sentence similarity computation. Training the model imposes alignment between the attention pattern of different views (embeddings of augmentations) during contrastive learning. Learning sentence embeddings with **miCSE** entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. This is achieved by regularizing the attention distribution. Regularizing the attention space enables learning representation in self-supervised fashion even when the _training corpus is comparatively small_. This is particularly interesting for _real-world applications_, where training data is significantly smaller thank Wikipedia.
11
 
12
  # Intended Use
13
+ The model intended to be used for encoding sentences or short paragraphs. Given an input text, the model produces a vector embedding capturing the semantics. Sentence representations correspond to embedding of the _**[CLS]**_ token. The embedding can be used for numerous tasks such as **retrieval**,**sentence similarity** comparison (see example 1) or **clustering** (see example 2).
14
 
15
 
16
  # Training data