File size: 9,573 Bytes
4e6a60f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Para saber si un negocio va a funcionar, es necesario realizar un estudio
de mercado, valorar la economía local durante un año, considerar la afluencia
de personas y la ubicación, así como determinar el tamaño de la inversión.
- text: Apoyo la opinión de Tyrexito y también reclamo al Banco Sabadell por sus comisiones.
- text: Los resultados del Banco Sabadell impulsan al IBEX 35.
- text: Aunque no pude retirar el bono de festividad en el cajero, ING y AKBANK rechazaron
mis quejas, pero tras anunciar una denuncia, me transfirieron el dinero en una
hora; si tienes razón, no te rindas.
- text: El Gobierno presentará al nuevo gobernador del Banco de España en una Comisión
del Congreso este jueves.
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7594202898550725
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| relevant | <ul><li>'Caixa y BBVA son los prestamistas que se benefician de la garantía en caso de impago en la financiación de inversiones, algo común también en las sociedades que avalan a comunidades autónomas.'</li><li>'El IBEX supera los 11.200 puntos gracias al impulso de la banca, liderado por Banco Sabadell con una subida del 2,05%.'</li><li>'Nuevo caso de phishing relacionado con ING, registrado el 16 de julio de 2024, con la URL /www.ingseguridad-app.com/es/login.'</li></ul> |
| discard | <ul><li>'El BBVA también tiene un mal servicio, ya que no aceptan billetes de 2.000 ni de 1.000 de San Martín, obligando a hacer largas filas tanto para cambiar como para depositar.'</li><li>'Merhaba, yaşadığınız deneyim için üzgünüz; Garanti BBVA ATM konum bilgilerini paylaşırsanız gerekli kontrolleri hızlıca yapacağız.'</li><li>'En la gasolinera sobre Constituyentes, mi tarjeta de crédito fue denegada y no me hicieron cargo en la aplicación.'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7594 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-100")
# Run inference
preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 22.0 | 41 |
| Label | Training Sample Count |
|:---------|:----------------------|
| discard | 100 |
| relevant | 100 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.3931 | - |
| 0.0396 | 50 | 0.2501 | - |
| 0.0792 | 100 | 0.2471 | - |
| 0.1188 | 150 | 0.1991 | - |
| 0.1584 | 200 | 0.0902 | - |
| 0.1979 | 250 | 0.0218 | - |
| 0.2375 | 300 | 0.0055 | - |
| 0.2771 | 350 | 0.0026 | - |
| 0.3167 | 400 | 0.0013 | - |
| 0.3563 | 450 | 0.0005 | - |
| 0.3959 | 500 | 0.0005 | - |
| 0.4355 | 550 | 0.001 | - |
| 0.4751 | 600 | 0.0003 | - |
| 0.5146 | 650 | 0.0003 | - |
| 0.5542 | 700 | 0.0001 | - |
| 0.5938 | 750 | 0.0003 | - |
| 0.6334 | 800 | 0.0003 | - |
| 0.6730 | 850 | 0.0004 | - |
| 0.7126 | 900 | 0.0002 | - |
| 0.7522 | 950 | 0.0001 | - |
| 0.7918 | 1000 | 0.0001 | - |
| 0.8314 | 1050 | 0.0001 | - |
| 0.8709 | 1100 | 0.0002 | - |
| 0.9105 | 1150 | 0.0002 | - |
| 0.9501 | 1200 | 0.0002 | - |
| 0.9897 | 1250 | 0.0 | - |
### Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |