rahular commited on
Commit
fcab755
·
verified ·
1 Parent(s): cedda57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -5
README.md CHANGED
@@ -1,12 +1,23 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
 
7
- # Sarvam-2B
8
 
9
- Sarvam-2B is a 2-billion parameter language model specifically optimized for Indian languages. It provides best in-class performance in 10 Indic languages (bn, gu, hi, kn, ml, mr, or, pa, ta, te) when compared with popular models like Gemma-2-2B and Llama-3.2-3B. It is also competitive against the much larger models like Llama-3.1-8B in these languages. More details can be found in our [release blog](https://www.sarvam.ai/blogs/sarvam-2b).
10
 
11
  The model was trained with [NVIDIA NeMo™ Framework](https://github.com/NVIDIA/NeMo) on the Yotta Shakti Cloud using HGX H100 systems.
12
 
@@ -51,8 +62,8 @@ The model was trained with [NVIDIA NeMo™ Framework](https://github.com/NVIDIA
51
  from transformers import AutoModelForCausalLM, AutoTokenizer
52
 
53
  # Load model and tokenizer
54
- model = AutoModelForCausalLM.from_pretrained("Sarvam/sarvam-2b")
55
- tokenizer = AutoTokenizer.from_pretrained("Sarvam/sarvam-2b")
56
 
57
  # Example usage
58
  text = "कर्नाटक की राजधानी है:"
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - bn
5
+ - en
6
+ - gu
7
+ - hi
8
+ - kn
9
+ - ml
10
+ - mr
11
+ - or
12
+ - pa
13
+ - ta
14
+ - te
15
  ---
16
 
17
 
18
+ # Sarvam-1
19
 
20
+ Sarvam-1 is a 2-billion parameter language model specifically optimized for Indian languages. It provides best in-class performance in 10 Indic languages (bn, gu, hi, kn, ml, mr, or, pa, ta, te) when compared with popular models like Gemma-2-2B and Llama-3.2-3B. It is also competitive against the much larger models like Llama-3.1-8B in these languages. More details can be found in our [release blog](https://www.sarvam.ai/blogs/sarvam-1).
21
 
22
  The model was trained with [NVIDIA NeMo™ Framework](https://github.com/NVIDIA/NeMo) on the Yotta Shakti Cloud using HGX H100 systems.
23
 
 
62
  from transformers import AutoModelForCausalLM, AutoTokenizer
63
 
64
  # Load model and tokenizer
65
+ model = AutoModelForCausalLM.from_pretrained("sarvamai/sarvam-1")
66
+ tokenizer = AutoTokenizer.from_pretrained("sarvamai/sarvam-1")
67
 
68
  # Example usage
69
  text = "कर्नाटक की राजधानी है:"