Initial commit
Browse files- .gitattributes +1 -0
- README.md +58 -0
- args.yml +65 -0
- config.yml +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-Walker2d-v3.zip +3 -0
- sac-Walker2d-v3/_stable_baselines3_version +1 -0
- sac-Walker2d-v3/actor.optimizer.pth +3 -0
- sac-Walker2d-v3/critic.optimizer.pth +3 -0
- sac-Walker2d-v3/data +113 -0
- sac-Walker2d-v3/ent_coef_optimizer.pth +3 -0
- sac-Walker2d-v3/policy.pth +3 -0
- sac-Walker2d-v3/pytorch_variables.pth +3 -0
- sac-Walker2d-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2d-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 3876.28 +/- 75.51
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2d-v3
|
20 |
+
type: Walker2d-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **SAC** Agent playing **Walker2d-v3**
|
24 |
+
This is a trained model of a **SAC** agent playing **Walker2d-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo sac --env Walker2d-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo sac --env Walker2d-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo sac --env Walker2d-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo sac --env Walker2d-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('learning_starts', 10000),
|
54 |
+
('n_timesteps', 1000000.0),
|
55 |
+
('policy', 'MlpPolicy'),
|
56 |
+
('use_sde', False),
|
57 |
+
('normalize', False)])
|
58 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - env
|
5 |
+
- Walker2d-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- use_sde: false
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- 1000000
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - learning_starts
|
3 |
+
- 10000
|
4 |
+
- - n_timesteps
|
5 |
+
- 1000000.0
|
6 |
+
- - policy
|
7 |
+
- MlpPolicy
|
8 |
+
- - use_sde
|
9 |
+
- false
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2eca54e5995f766d2697652c2e711913fc21a453bafffd5f0bb151168c7baa4
|
3 |
+
size 1450496
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3876.280908399999, "std_reward": 75.51175337541349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T18:45:48.120655"}
|
sac-Walker2d-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb749324e176bd3aa3a18309bac05ca0e050f86aa461f4e4835c9be5c3ebc262
|
3 |
+
size 3236549
|
sac-Walker2d-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
sac-Walker2d-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d6fcefef6a7acd601acac008b644617c3ffc1619d8d14b1dc1b2899c0380a9e
|
3 |
+
size 592181
|
sac-Walker2d-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:610061da6ec0e99875c92be162a7aed0f8fe19251d06c74d4d35c4e930bde4f5
|
3 |
+
size 1161629
|
sac-Walker2d-v3/data
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function SACPolicy.__init__ at 0x7fe90532c710>",
|
8 |
+
"_build": "<function SACPolicy._build at 0x7fe90532c7a0>",
|
9 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fe90532c830>",
|
10 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7fe90532c8c0>",
|
11 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7fe90532c950>",
|
12 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7fe90532c9e0>",
|
13 |
+
"forward": "<function SACPolicy.forward at 0x7fe90532ca70>",
|
14 |
+
"_predict": "<function SACPolicy._predict at 0x7fe90532cb00>",
|
15 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7fe90532cb90>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7fe90530fab0>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVpQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxGFlGgKiUOIAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLEYWUaAqJQ4gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsRhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsRhZRoKIlDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxGFlHViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
17
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
41 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
42 |
+
"bounded_below": "[ True True True True True True]",
|
43 |
+
"bounded_above": "[ True True True True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
6
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 1000000,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1635497676.7438397,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVEgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLEYaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOIPyT3wHst9D9VnlZwglDEP3rENxewV5q/FY3drgOxwj/MUa+shR/qP3G6VrTXuZq/tsWnTZbnuT+pPTzAbeTtP664Tci40uk/IKpkZ0Yb6j9mTwLolW0IQBDTAuQMWQpA3WsB2k/6CsAb+igs1pe2P1+Ssx/ZW/4/CuDMj2IUAsCTx6BbZUQLwJR0lGIu"
|
70 |
+
},
|
71 |
+
"_episode_num": 3137,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcv27Pgv8rkCUhpRSlIwBbJRN6AOMAXSUR0DGoBsAo5PudX2UKGgGaAloD0MI/3kaMLgprkCUhpRSlGgVTegDaBZHQMamZTIvJzV1fZQoaAZoCWgPQwg90XXhf02uQJSGlFKUaBVN6ANoFkdAxqylLL6k7HV9lChoBmgJaA9DCLDFbp/VGa5AlIaUUpRoFU3oA2gWR0DGsulZV4ordX2UKGgGaAloD0MITTJyFuaCrkCUhpRSlGgVTegDaBZHQMa5K/7aZhN1fZQoaAZoCWgPQwhlUG1wejmuQJSGlFKUaBVN6ANoFkdAxr94T7l7t3V9lChoBmgJaA9DCMhFtYggSq5AlIaUUpRoFU3oA2gWR0DGxb5JVbRndX2UKGgGaAloD0MI+YctPbpjrkCUhpRSlGgVTegDaBZHQMbQLAXdj5N1fZQoaAZoCWgPQwgWpu81dISsQJSGlFKUaBVNlANoFkdAxtXwBQvYe3V9lChoBmgJaA9DCKGEmbbXn65AlIaUUpRoFU3oA2gWR0DG3DxsVLzxdX2UKGgGaAloD0MItB6+TDRlr0CUhpRSlGgVTegDaBZHQMbibDABT4t1fZQoaAZoCWgPQwglPQytZgmvQJSGlFKUaBVN6ANoFkdAxuikhePaMHV9lChoBmgJaA9DCIGyKVdwQq9AlIaUUpRoFU3oA2gWR0DG7ufRVp9JdX2UKGgGaAloD0MIYr1RK/yqr0CUhpRSlGgVTegDaBZHQMb1PWll9Sd1fZQoaAZoCWgPQwivX7AbbpGvQJSGlFKUaBVN6ANoFkdAxvuJqDbrT3V9lChoBmgJaA9DCK65o/8dsK5AlIaUUpRoFU3oA2gWR0DHAdHMbFS9dX2UKGgGaAloD0MIwk8cQG/NrkCUhpRSlGgVTegDaBZHQMcIFzQu27Z1fZQoaAZoCWgPQwglXTP5Vq6vQJSGlFKUaBVN6ANoFkdAxxLJ3WWhRXV9lChoBmgJaA9DCHejj/ngS69AlIaUUpRoFU3oA2gWR0DHGRBiExqPdX2UKGgGaAloD0MIobq5+NsxrkCUhpRSlGgVTegDaBZHQMcfXlm4Ajp1fZQoaAZoCWgPQwjb3QN0B9euQJSGlFKUaBVN6ANoFkdAxyWQJFb3XnV9lChoBmgJaA9DCKc+kLwjZq9AlIaUUpRoFU3oA2gWR0DHK7VclgMMdX2UKGgGaAloD0MInx1wXQlLrkCUhpRSlGgVTegDaBZHQMcyAAuIyj51fZQoaAZoCWgPQwjUCtP3Uk2vQJSGlFKUaBVN6ANoFkdAxzg7S7Xg+HV9lChoBmgJaA9DCA8pBkh8y65AlIaUUpRoFU3oA2gWR0DHPmQCEHt4dX2UKGgGaAloD0MI66pALX4Fr0CUhpRSlGgVTegDaBZHQMdErAGbCrN1fZQoaAZoCWgPQwiYhuEjqqeuQJSGlFKUaBVN6ANoFkdAx0r3lDF6zHV9lChoBmgJaA9DCBmqYipVbqlAlIaUUpRoFU0+A2gWR0DHVIchq0tzdX2UKGgGaAloD0MIhlW8kWkSr0CUhpRSlGgVTegDaBZHQMda0lw97nh1fZQoaAZoCWgPQwjRrkLK50SvQJSGlFKUaBVN6ANoFkdAx2EfBLwnY3V9lChoBmgJaA9DCMTQ6uQs3qJAlIaUUpRoFU2WAmgWR0DHZU3mRvFWdX2UKGgGaAloD0MI1LZhFNSorkCUhpRSlGgVTegDaBZHQMdrn5HNHH51fZQoaAZoCWgPQwi3YKku8A6vQJSGlFKUaBVN6ANoFkdAx3H6rDIiknV9lChoBmgJaA9DCICZ7+Cffq5AlIaUUpRoFU3oA2gWR0DHeFBZ8rqddX2UKGgGaAloD0MIv9TPm3ITrkCUhpRSlGgVTegDaBZHQMd+iPUBnzx1fZQoaAZoCWgPQwjpnQq4P5+rQJSGlFKUaBVNZgNoFkdAx4PrhLoOhHV9lChoBmgJaA9DCJkNMsn4161AlIaUUpRoFU3oA2gWR0DHijmZZ0SzdX2UKGgGaAloD0MIDThLyZpXr0CUhpRSlGgVTegDaBZHQMeU1gbyYol1fZQoaAZoCWgPQwhNE7afbGyvQJSGlFKUaBVN6ANoFkdAx5sXNB4UvnV9lChoBmgJaA9DCIhGdxALWa9AlIaUUpRoFU3oA2gWR0DHoV0sWfsedX2UKGgGaAloD0MIk/yIX0l0r0CUhpRSlGgVTegDaBZHQMensfcWTHN1fZQoaAZoCWgPQwiefHpsYyKvQJSGlFKUaBVN6ANoFkdAx632QHRkVnV9lChoBmgJaA9DCFt7n6rqzK9AlIaUUpRoFU3oA2gWR0DHtDoYrJ8wdX2UKGgGaAloD0MIAFMGDhjPrkCUhpRSlGgVTegDaBZHQMe6dSIgvDh1fZQoaAZoCWgPQwiHhzB+wtmuQJSGlFKUaBVN6ANoFkdAx8C63MINVnV9lChoBmgJaA9DCFBxHHgVh69AlIaUUpRoFU3oA2gWR0DHxwC+UQkHdX2UKGgGaAloD0MIzAcEOmvXrUCUhpRSlGgVTegDaBZHQMfNQWL5ylx1fZQoaAZoCWgPQwgnofSFIIqvQJSGlFKUaBVN6ANoFkdAx9fJ0vGp/HV9lChoBmgJaA9DCDATRUidIXNAlIaUUpRoFUuNaBZHQMfYqcyN4qx1fZQoaAZoCWgPQwj20hQBdh6vQJSGlFKUaBVN6ANoFkdAx97BY1YQrnV9lChoBmgJaA9DCDNslPVDW65AlIaUUpRoFU3oA2gWR0DH5PmZZ0SzdX2UKGgGaAloD0MIpnwIqj5BrkCUhpRSlGgVTegDaBZHQMfrLwd0aIh1fZQoaAZoCWgPQwhDc51GEievQJSGlFKUaBVN6ANoFkdAx/Fu3z+WGHV9lChoBmgJaA9DCATidf3qha5AlIaUUpRoFU3oA2gWR0DH98QsVclgdX2UKGgGaAloD0MIJsPxfMZ/g0CUhpRSlGgVS81oFkdAx/kQ5sCT2XV9lChoBmgJaA9DCCRfCaQsY65AlIaUUpRoFU3oA2gWR0DH/2FxffGddX2UKGgGaAloD0MItwpioMN1p0CUhpRSlGgVTQQDaBZHQMgEO9f9gnd1fZQoaAZoCWgPQwhLkuf6pkOvQJSGlFKUaBVN6ANoFkdAyAqPh6SkkHV9lChoBmgJaA9DCApNEkvqgqlAlIaUUpRoFU0vA2gWR0DID6qkIomYdX2UKGgGaAloD0MIbvjddDOnrkCUhpRSlGgVTegDaBZHQMgV/JjMFEB1fZQoaAZoCWgPQwhjDoKODsOuQJSGlFKUaBVN6ANoFkdAyCCrkjopx3V9lChoBmgJaA9DCH16bMs4k69AlIaUUpRoFU3oA2gWR0DIJvwQFs55dX2UKGgGaAloD0MIlzszwXhtr0CUhpRSlGgVTegDaBZHQMgtTSFXaJ11fZQoaAZoCWgPQwhGJ0ut76KuQJSGlFKUaBVN6ANoFkdAyDN49V3ljnV9lChoBmgJaA9DCJjfaTLL3a5AlIaUUpRoFU3oA2gWR0DIOaqKcd5qdX2UKGgGaAloD0MId7temurbrkCUhpRSlGgVTegDaBZHQMg/7FvAGjd1fZQoaAZoCWgPQwi5qBYRBSOvQJSGlFKUaBVN6ANoFkdAyEYerupjt3V9lChoBmgJaA9DCP/QzJMTA69AlIaUUpRoFU3oA2gWR0DITGr9/BnBdX2UKGgGaAloD0MI3JvfMC0CsECUhpRSlGgVTegDaBZHQMhSwQgLZzx1fZQoaAZoCWgPQwhwP+CBSVqvQJSGlFKUaBVN6ANoFkdAyFkOQQtjC3V9lChoBmgJaA9DCO+OjNWWTa5AlIaUUpRoFU3oA2gWR0DIY5GtnwocdX2UKGgGaAloD0MIev60UZUrr0CUhpRSlGgVTegDaBZHQMhp2LAgxJx1fZQoaAZoCWgPQwhe29stUXCvQJSGlFKUaBVN6ANoFkdAyHAkVzIV/XV9lChoBmgJaA9DCK4upwQ0va9AlIaUUpRoFU3oA2gWR0DIdno0j1PFdX2UKGgGaAloD0MI+daH9QY8r0CUhpRSlGgVTegDaBZHQMh8yLt/nW91fZQoaAZoCWgPQwgAx549V3ivQJSGlFKUaBVN6ANoFkdAyIMdlyR0VHV9lChoBmgJaA9DCM07TtGZhq9AlIaUUpRoFU3oA2gWR0DIiWCDAaegdX2UKGgGaAloD0MIueLiqAxhr0CUhpRSlGgVTegDaBZHQMiPiZwfhdd1fZQoaAZoCWgPQwhMiLmkarivQJSGlFKUaBVN6ANoFkdAyJWqsFt8/nV9lChoBmgJaA9DCPceLjmG6q5AlIaUUpRoFU3oA2gWR0DIm+RP69CedX2UKGgGaAloD0MISUxQw1/Er0CUhpRSlGgVTegDaBZHQMimiUJOWSl1fZQoaAZoCWgPQwjEX5M16tqvQJSGlFKUaBVN6ANoFkdAyKza4uscQ3V9lChoBmgJaA9DCCnQJ/Ikka9AlIaUUpRoFU3oA2gWR0DIsynfwZwXdX2UKGgGaAloD0MIRu7p6v4yr0CUhpRSlGgVTegDaBZHQMi5ek9dNWV1fZQoaAZoCWgPQwhq2VpfaCewQJSGlFKUaBVN6ANoFkdAyL/KfxMFlnV9lChoBmgJaA9DCEht4uS2vq9AlIaUUpRoFU3oA2gWR0DIxhrv9cbBdX2UKGgGaAloD0MIsAJ8t+k+r0CUhpRSlGgVTegDaBZHQMjMYrxy4nZ1fZQoaAZoCWgPQwg6AyMvU6WvQJSGlFKUaBVN6ANoFkdAyNKvW912aHV9lChoBmgJaA9DCE3bv7I2D7BAlIaUUpRoFU3oA2gWR0DI2P2YD1XedX2UKGgGaAloD0MICFVq9iBir0CUhpRSlGgVTegDaBZHQMjfXvFefI11fZQoaAZoCWgPQwhuFcRAlymwQJSGlFKUaBVN6ANoFkdAyOmUWIoE0XV9lChoBmgJaA9DCMrAAS15ArBAlIaUUpRoFU3oA2gWR0DI76krPMSsdX2UKGgGaAloD0MI2eicn9osr0CUhpRSlGgVTegDaBZHQMj11H/Lkjp1fZQoaAZoCWgPQwjecvVjkyOvQJSGlFKUaBVN6ANoFkdAyPwg1EVnEnV9lChoBmgJaA9DCKzHfasdFa9AlIaUUpRoFU3oA2gWR0DJAm7YGt6pdX2UKGgGaAloD0MIJVmHoyuirkCUhpRSlGgVTegDaBZHQMkIt3668QJ1fZQoaAZoCWgPQwhN+KV+3jSvQJSGlFKUaBVN6ANoFkdAyQ8JbQkX13V9lChoBmgJaA9DCAQcQpWCvq9AlIaUUpRoFU3oA2gWR0DJFb9SydFwdX2UKGgGaAloD0MIwocSLVEGr0CUhpRSlGgVTegDaBZHQMkb8Wl/H5t1fZQoaAZoCWgPQwh40sJl9cyuQJSGlFKUaBVN6ANoFkdAySInBk7OmnVlLg=="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 990000,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 256,
|
86 |
+
"learning_starts": 10000,
|
87 |
+
"tau": 0.005,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": 1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fe90578eb90>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7fe90578ec20>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7fe9052f57a0>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fe9052f5830>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc_data object at 0x7fe9057e55d0>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"target_entropy": -6.0,
|
110 |
+
"ent_coef": "auto",
|
111 |
+
"target_update_interval": 1,
|
112 |
+
"remove_time_limit_termination": false
|
113 |
+
}
|
sac-Walker2d-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:991caf16729201f99cfbf797a14a2da00b0d59adcb1638e7cf063ba339c58aab
|
3 |
+
size 1255
|
sac-Walker2d-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7b59fa5c3657f168f957b251f1c14b84d03b6563362e4b175471d1f042473a0
|
3 |
+
size 1459973
|
sac-Walker2d-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6379f4ba65e26fe9f55865b00f289abb40867d6a69ef940f04d50218ecdaa59e
|
3 |
+
size 747
|
sac-Walker2d-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17fed09f2bee376796fea56296d44d6869baa01aab7badfb9ab75740d3d4080f
|
3 |
+
size 119459
|