chaojiemao
commited on
modify model readme
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ tags:
|
|
24 |
路
|
25 |
<strong>Jingfeng Zhang</strong>
|
26 |
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
<p align="center">
|
28 |
<b>Alibaba Group</b>
|
29 |
</p>
|
30 |
-
|
31 |
-
<p>
|
32 |
-
<a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF' margin-top=0 margin-bottom=0></a>
|
33 |
-
<a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page' margin-top=0 margin-bottom=0></a>
|
34 |
-
<a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow' margin-top=0 margin-bottom=0></a>
|
35 |
-
<a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue' margin-top=0 margin-bottom=0></a>
|
36 |
-
</p>
|
37 |
<p>
|
38 |
<table align="center">
|
39 |
<tr>
|
@@ -44,21 +44,13 @@ tags:
|
|
44 |
</table>
|
45 |
</p>
|
46 |
|
|
|
|
|
47 |
SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
|
48 |
#### Code Example
|
49 |
```shell
|
50 |
-
|
51 |
-
|
52 |
-
PYTHONPATH=. python scepter/tools/run_train.py --cfg scepter/methods/SCEdit/t2i_sdxl_1024_sce.yaml
|
53 |
-
```
|
54 |
-
|
55 |
-
To prepare the training dataset.
|
56 |
-
|
57 |
-
```python
|
58 |
-
# pip install modelscope
|
59 |
-
from modelscope.msdatasets import MsDataset
|
60 |
-
ms_train_dataset = MsDataset.load('style_custom_dataset', namespace='damo', subset_name='3D', split='train_short')
|
61 |
-
print(next(iter(ms_train_dataset)))
|
62 |
```
|
63 |
|
64 |
## BibTeX
|
|
|
24 |
路
|
25 |
<strong>Jingfeng Zhang</strong>
|
26 |
</p>
|
27 |
+
|
28 |
+
<div align="center">
|
29 |
+
|
30 |
+
[**Paper (ArXiv)**](https://arxiv.org/abs/2312.11392) **|** [**Project Page**](https://scedit.github.io/) **|** [**Code**](https://github.com/modelscope/scepter)**|** [**Swift**](https://github.com/modelscope/swift)
|
31 |
+
</div>
|
32 |
+
|
33 |
<p align="center">
|
34 |
<b>Alibaba Group</b>
|
35 |
</p>
|
36 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
<p>
|
38 |
<table align="center">
|
39 |
<tr>
|
|
|
44 |
</table>
|
45 |
</p>
|
46 |
|
47 |
+
|
48 |
+
|
49 |
SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
|
50 |
#### Code Example
|
51 |
```shell
|
52 |
+
pip install scepter
|
53 |
+
python -m scepter.tools.webui
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
```
|
55 |
|
56 |
## BibTeX
|