chaojiemao
commited on
modify the html style
Browse files
README.md
CHANGED
@@ -12,10 +12,8 @@ tags:
|
|
12 |
- ControlNet
|
13 |
- Lora
|
14 |
---
|
|
|
15 |
<p align="center">
|
16 |
-
|
17 |
-
<h2 align="center">馃獎SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2>
|
18 |
-
<p align="center">
|
19 |
<strong>Zeyinzi Jiang</strong>
|
20 |
路
|
21 |
<strong>Chaojie Mao</strong>
|
@@ -25,16 +23,16 @@ tags:
|
|
25 |
<strong>Zhen Han</strong>
|
26 |
路
|
27 |
<strong>Jingfeng Zhang</strong>
|
28 |
-
|
29 |
-
|
30 |
-
<a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF'></a>
|
31 |
-
<a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page'></a>
|
32 |
-
<a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow'></a>
|
33 |
-
<a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue'></a>
|
34 |
-
<br>
|
35 |
<b>Alibaba Group</b>
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
<table align="center">
|
39 |
<tr>
|
40 |
<td>
|
@@ -42,6 +40,7 @@ tags:
|
|
42 |
</td>
|
43 |
</tr>
|
44 |
</table>
|
|
|
45 |
|
46 |
SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
|
47 |
#### Code Example
|
|
|
12 |
- ControlNet
|
13 |
- Lora
|
14 |
---
|
15 |
+
<p align="center"><h2 align="center">馃獎SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2> </p>
|
16 |
<p align="center">
|
|
|
|
|
|
|
17 |
<strong>Zeyinzi Jiang</strong>
|
18 |
路
|
19 |
<strong>Chaojie Mao</strong>
|
|
|
23 |
<strong>Zhen Han</strong>
|
24 |
路
|
25 |
<strong>Jingfeng Zhang</strong>
|
26 |
+
</p>
|
27 |
+
<p align="center">
|
|
|
|
|
|
|
|
|
|
|
28 |
<b>Alibaba Group</b>
|
29 |
+
</p>
|
30 |
+
<hr>
|
31 |
+
<a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF'></a>
|
32 |
+
<a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page'></a>
|
33 |
+
<a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow'></a>
|
34 |
+
<a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue'></a>
|
35 |
+
<p>
|
36 |
<table align="center">
|
37 |
<tr>
|
38 |
<td>
|
|
|
40 |
</td>
|
41 |
</tr>
|
42 |
</table>
|
43 |
+
</p>
|
44 |
|
45 |
SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
|
46 |
#### Code Example
|