chaojiemao commited on
Commit
caf417a
verified
1 Parent(s): 23cc760

modify the html style

Browse files
Files changed (1) hide show
  1. README.md +11 -12
README.md CHANGED
@@ -12,10 +12,8 @@ tags:
12
  - ControlNet
13
  - Lora
14
  ---
 
15
  <p align="center">
16
-
17
- <h2 align="center">馃獎SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2>
18
- <p align="center">
19
  <strong>Zeyinzi Jiang</strong>
20
 
21
  <strong>Chaojie Mao</strong>
@@ -25,16 +23,16 @@ tags:
25
  <strong>Zhen Han</strong>
26
 
27
  <strong>Jingfeng Zhang</strong>
28
- <br>
29
- <br>
30
- <a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF'></a>
31
- <a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page'></a>
32
- <a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow'></a>
33
- <a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue'></a>
34
- <br>
35
  <b>Alibaba Group</b>
36
- </p>
37
-
 
 
 
 
 
38
  <table align="center">
39
  <tr>
40
  <td>
@@ -42,6 +40,7 @@ tags:
42
  </td>
43
  </tr>
44
  </table>
 
45
 
46
  SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
47
  #### Code Example
 
12
  - ControlNet
13
  - Lora
14
  ---
15
+ <p align="center"><h2 align="center">馃獎SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2> </p>
16
  <p align="center">
 
 
 
17
  <strong>Zeyinzi Jiang</strong>
18
 
19
  <strong>Chaojie Mao</strong>
 
23
  <strong>Zhen Han</strong>
24
 
25
  <strong>Jingfeng Zhang</strong>
26
+ </p>
27
+ <p align="center">
 
 
 
 
 
28
  <b>Alibaba Group</b>
29
+ </p>
30
+ <hr>
31
+ <a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF'></a>
32
+ <a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page'></a>
33
+ <a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow'></a>
34
+ <a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue'></a>
35
+ <p>
36
  <table align="center">
37
  <tr>
38
  <td>
 
40
  </td>
41
  </tr>
42
  </table>
43
+ </p>
44
 
45
  SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
46
  #### Code Example