scholarly360
commited on
Commit
·
839344f
1
Parent(s):
9bb49a5
Update README.md
Browse files
README.md
CHANGED
@@ -8,116 +8,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
|
|
|
12 |
|
13 |
-
This is
|
14 |
-
|
15 |
-
<!--- Describe your model here -->
|
16 |
-
|
17 |
-
## Usage (Sentence-Transformers)
|
18 |
-
|
19 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
-
|
21 |
-
```
|
22 |
-
pip install -U sentence-transformers
|
23 |
-
```
|
24 |
-
|
25 |
-
Then you can use the model like this:
|
26 |
-
|
27 |
-
```python
|
28 |
-
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
-
|
31 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
-
embeddings = model.encode(sentences)
|
33 |
-
print(embeddings)
|
34 |
-
```
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
## Usage (HuggingFace Transformers)
|
39 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModel
|
43 |
-
import torch
|
44 |
-
|
45 |
-
|
46 |
-
def cls_pooling(model_output, attention_mask):
|
47 |
-
return model_output[0][:,0]
|
48 |
-
|
49 |
-
|
50 |
-
# Sentences we want sentence embeddings for
|
51 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
52 |
-
|
53 |
-
# Load model from HuggingFace Hub
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
55 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
56 |
-
|
57 |
-
# Tokenize sentences
|
58 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
59 |
-
|
60 |
-
# Compute token embeddings
|
61 |
-
with torch.no_grad():
|
62 |
-
model_output = model(**encoded_input)
|
63 |
-
|
64 |
-
# Perform pooling. In this case, cls pooling.
|
65 |
-
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
|
66 |
-
|
67 |
-
print("Sentence embeddings:")
|
68 |
-
print(sentence_embeddings)
|
69 |
-
```
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
## Evaluation Results
|
74 |
-
|
75 |
-
<!--- Describe how your model was evaluated -->
|
76 |
-
|
77 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
78 |
-
|
79 |
-
|
80 |
-
## Training
|
81 |
-
The model was trained with the parameters:
|
82 |
-
|
83 |
-
**DataLoader**:
|
84 |
-
|
85 |
-
`torch.utils.data.dataloader.DataLoader` of length 112273 with parameters:
|
86 |
-
```
|
87 |
-
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
88 |
-
```
|
89 |
-
|
90 |
-
**Loss**:
|
91 |
-
|
92 |
-
`sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss`
|
93 |
-
|
94 |
-
Parameters of the fit()-Method:
|
95 |
-
```
|
96 |
-
{
|
97 |
-
"epochs": 1,
|
98 |
-
"evaluation_steps": 0,
|
99 |
-
"evaluator": "NoneType",
|
100 |
-
"max_grad_norm": 1,
|
101 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
102 |
-
"optimizer_params": {
|
103 |
-
"lr": 1e-05
|
104 |
-
},
|
105 |
-
"scheduler": "constantlr",
|
106 |
-
"steps_per_epoch": null,
|
107 |
-
"warmup_steps": 10000,
|
108 |
-
"weight_decay": 0.01
|
109 |
-
}
|
110 |
-
```
|
111 |
-
|
112 |
-
|
113 |
-
## Full Model Architecture
|
114 |
-
```
|
115 |
-
SentenceTransformer(
|
116 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
117 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
118 |
-
)
|
119 |
-
```
|
120 |
-
|
121 |
-
## Citing & Authors
|
122 |
-
|
123 |
-
<!--- Describe where people can find more information -->
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
From :
|
12 |
+
Indian Annual Report Assessment Using Large Language Models
|
13 |
|
14 |
+
This is Bert based Sentence Transformers Trained on Annual Reports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|