File size: 4,232 Bytes
bfb4bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import skops
import sklearn
import matplotlib.pyplot as plt
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
# preprocess the dataset
df = pd.read_csv("../input/tabular-playground-series-aug-2022/train.csv")
column_transformer_pipeline = ColumnTransformer([
("loading_missing_value_imputer", SimpleImputer(strategy="mean"), ["loading"]),
("numerical_missing_value_imputer", SimpleImputer(strategy="mean"), list(df.columns[df.dtypes == 'float64'])),
("attribute_0_encoder", OneHotEncoder(categories = "auto"), ["attribute_0"]),
("attribute_1_encoder", OneHotEncoder(categories = "auto"), ["attribute_1"]),
("product_code_encoder", OneHotEncoder(categories = "auto"), ["product_code"])])
df = df.drop(["id"], axis=1)
pipeline = Pipeline([
('transformation', column_transformer_pipeline),
('model', DecisionTreeClassifier(max_depth=4))
])
X = df.drop(["failure"], axis = 1)
y = df.failure
# split the data and train the model
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)
pipeline.fit(X_train, y_train)
# we will now use skops to initialize a repository
# create a model card, and push the model to the
# Hugging Face Hub
from skops import card, hub_utils
import pickle
model_path = "model.pkl"
local_repo = "decision-tree-playground-kaggle"
# save the model
with open(model_path, mode="bw") as f:
pickle.dump(pipeline, file=f)
# initialize the repository
hub_utils.init(
model=model_path,
requirements=[f"scikit-learn={sklearn.__version__}"],
dst=local_repo,
task="tabular-classification",
data=X_test,
)
# initialize the model card
from pathlib import Path
model_card = card.Card(pipeline, metadata=card.metadata_from_config(Path(local_repo)))
## let's fill some information about the model
limitations = "This model is not ready to be used in production."
model_description = "This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset."
model_card_authors = "huggingface"
get_started_code = f"import pickle \nwith open({local_repo}/{model_path}, 'rb') as file: \n clf = pickle.load(file)"
# pass this information to the card
model_card.add(
get_started_code=get_started_code,
model_card_authors=model_card_authors,
limitations=limitations,
model_description=model_description,
)
# we will now evaluate the model and write eval results to the card
from sklearn.metrics import accuracy_score, f1_score, ConfusionMatrixDisplay, confusion_matrix
model_card.add(eval_method="The model is evaluated using test split, on accuracy and F1 score with micro average.")
model_card.add_metrics(accuracy=accuracy_score(y_test, y_pred))
model_card.add_metrics(**{"f1 score": f1_score(y_test, y_pred, average="micro")})
model = pipeline.steps[-1][1]
# we will plot the tree and add the plot to our card
from sklearn.tree import plot_tree
plt.figure()
plot_tree(model,filled=True)
plt.savefig(f'{local_repo}/tree.png',format='png',bbox_inches = "tight")
# let's make a prediction and evaluate the model
y_pred = pipeline.predict(X_test)
cm = confusion_matrix(y_test, y_pred, labels=model.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
disp.plot()
# save the plot
plt.savefig(Path(local_repo) / "confusion_matrix.png")
# add figures to model card with their new sections as keys to the dictionary
model_card.add_plot(**{"Tree Plot": f'{local_repo}/tree.png', "Confusion Matrix": f"{local_repo}/confusion_matrix.png"})
#save the card
model_card.save(f"{local_repo}/README.md")
# we can now push the model!
# if the repository doesn't exist remotely on the Hugging Face Hub, it will be created when we set create_remote to True
repo_id = "scikit-learn/tabular-playground"
hub_utils.push(
repo_id=repo_id,
source=local_repo,
token=token,
commit_message="pushing files to the repo from the example!",
create_remote=True,
) |