sdadas commited on
Commit
083cbc1
·
verified ·
1 Parent(s): 9027951

Upload configuration_roberta.py

Browse files
Files changed (1) hide show
  1. configuration_roberta.py +151 -0
configuration_roberta.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ RoBERTa configuration"""
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from transformers import PretrainedConfig
21
+ from transformers.onnx import OnnxConfig
22
+ from transformers.utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class RobertaConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
31
+ used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
32
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
33
+ [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 50265):
41
+ Vocabulary size of the RoBERTa model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
43
+ hidden_size (`int`, *optional*, defaults to 768):
44
+ Dimensionality of the encoder layers and the pooler layer.
45
+ num_hidden_layers (`int`, *optional*, defaults to 12):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 12):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ intermediate_size (`int`, *optional*, defaults to 3072):
50
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
51
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
52
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
53
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
54
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
55
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
56
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
57
+ The dropout ratio for the attention probabilities.
58
+ max_position_embeddings (`int`, *optional*, defaults to 512):
59
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
60
+ just in case (e.g., 512 or 1024 or 2048).
61
+ type_vocab_size (`int`, *optional*, defaults to 2):
62
+ The vocabulary size of the `token_type_ids` passed when calling [`RobertaModel`] or [`TFRobertaModel`].
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
66
+ The epsilon used by the layer normalization layers.
67
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
68
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
69
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
70
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
71
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
72
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
73
+ is_decoder (`bool`, *optional*, defaults to `False`):
74
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
77
+ relevant if `config.is_decoder=True`.
78
+ classifier_dropout (`float`, *optional*):
79
+ The dropout ratio for the classification head.
80
+
81
+ Examples:
82
+
83
+ ```python
84
+ >>> from transformers import RobertaConfig, RobertaModel
85
+
86
+ >>> # Initializing a RoBERTa configuration
87
+ >>> configuration = RobertaConfig()
88
+
89
+ >>> # Initializing a model (with random weights) from the configuration
90
+ >>> model = RobertaModel(configuration)
91
+
92
+ >>> # Accessing the model configuration
93
+ >>> configuration = model.config
94
+ ```"""
95
+
96
+ model_type = "roberta"
97
+
98
+ def __init__(
99
+ self,
100
+ vocab_size=50265,
101
+ hidden_size=768,
102
+ num_hidden_layers=12,
103
+ num_attention_heads=12,
104
+ intermediate_size=3072,
105
+ hidden_act="gelu",
106
+ hidden_dropout_prob=0.1,
107
+ attention_probs_dropout_prob=0.1,
108
+ max_position_embeddings=512,
109
+ type_vocab_size=2,
110
+ initializer_range=0.02,
111
+ layer_norm_eps=1e-12,
112
+ pad_token_id=1,
113
+ bos_token_id=0,
114
+ eos_token_id=2,
115
+ position_embedding_type="absolute",
116
+ use_cache=True,
117
+ classifier_dropout=None,
118
+ **kwargs,
119
+ ):
120
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
121
+
122
+ self.vocab_size = vocab_size
123
+ self.hidden_size = hidden_size
124
+ self.num_hidden_layers = num_hidden_layers
125
+ self.num_attention_heads = num_attention_heads
126
+ self.hidden_act = hidden_act
127
+ self.intermediate_size = intermediate_size
128
+ self.hidden_dropout_prob = hidden_dropout_prob
129
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
130
+ self.max_position_embeddings = max_position_embeddings
131
+ self.type_vocab_size = type_vocab_size
132
+ self.initializer_range = initializer_range
133
+ self.layer_norm_eps = layer_norm_eps
134
+ self.position_embedding_type = position_embedding_type
135
+ self.use_cache = use_cache
136
+ self.classifier_dropout = classifier_dropout
137
+
138
+
139
+ class RobertaOnnxConfig(OnnxConfig):
140
+ @property
141
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
142
+ if self.task == "multiple-choice":
143
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
144
+ else:
145
+ dynamic_axis = {0: "batch", 1: "sequence"}
146
+ return OrderedDict(
147
+ [
148
+ ("input_ids", dynamic_axis),
149
+ ("attention_mask", dynamic_axis),
150
+ ]
151
+ )