File size: 7,217 Bytes
a36f620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
import math
import numpy as np
from argparse import ArgumentParser
from transformers import AutoTokenizer
from dotenv import load_dotenv
import os

load_dotenv()

# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
tokenizer = AutoTokenizer.from_pretrained(
    "meta-llama/Llama-3.2-1B-Instruct", token=os.environ["HF_TOKEN"]
)

parser = ArgumentParser()
parser.add_argument("--model_path_emb", "--model-path-emb", required=True)
parser.add_argument("--model_path_mf", "--model-path-mf", required=True)
# parser.add_argument("--model_path_1", "--model-path-1", required=True)
# parser.add_argument("--model_path_40", "--model-path-40", required=True)
parser.add_argument("--model_path_head", "--model-path-head", required=True)
parser.add_argument("--prompt", "-p", required=True, type=str)
parser.add_argument("--max-tokens", "--max_tokens", type=int, default=100)
parser.add_argument("--min_p", "--min-p", type=float, default=0.3)
parser.add_argument("--temp", type=float, default=1.0)
args = parser.parse_args()

import coremltools as ct

print("Loading models...")

cu = ct.ComputeUnit.CPU_AND_NE


def load_model(path, fname=None):
    if "mlmodelc" in path:
        return ct.models.CompiledMLModel(path, cu, fname)
    else:
        return ct.models.MLModel(path, cu, function_name=fname)


emb_model = load_model(args.model_path_emb)
model_1 = load_model(args.model_path_mf, "length_1")
model_40 = load_model(args.model_path_mf, "length_40")
model_head = load_model(args.model_path_head)

# if args.model_path.rstrip("/").endswith(".mlpackage"):
#     mf_model_1 = ct.models.MLModel(
#         args.model_path,
#         compute_units=ct.ComputeUnit.CPU_AND_NE,
#         function_name="length_1",
#     )
#     mf_model_64 = ct.models.MLModel(
#         args.model_path,
#         compute_units=ct.ComputeUnit.CPU_AND_NE,
#         function_name="length_64",
#     )
# else:
#     mf_model_1 = ct.models.CompiledMLModel(
#         args.model_path,
#         compute_units=ct.ComputeUnit.CPU_AND_NE,
#         function_name="length_1",
#     )
#     mf_model_64 = ct.models.CompiledMLModel(
#         args.model_path,
#         compute_units=ct.ComputeUnit.CPU_AND_NE,
#         function_name="length_64",
#     )

# mf_model_emb = ct.models.MLModel(
#     # args.model_path_emb,
#     "./Llama-3.2-1B-EMB-16Bits.mlpackage",
#     compute_units=ct.ComputeUnit.CPU_AND_NE,
#     # function_name="length_64",
# )
# mf_model_mf = ct.models.MLModel(
#     # args.model_path_1,
#     "./Llama-3.2-1B-4bits-MF.mlpackage/",
#     compute_units=ct.ComputeUnit.CPU_AND_NE,
#     # function_name="length_64",
# )
# mf_model_40 = ct.models.MLModel(
#     # args.model_path_40,
#     "./Llama-3.2-1B-4bits-CTX-40.mlpackage",
#     compute_units=ct.ComputeUnit.CPU_AND_NE,
#     # function_name="length_64",
# )
# head = ct.models.MLModel(
#     # args.model_path_head,
#     "./Llama-3.2-1B-HEAD-6Bits.mlpackage",
#     compute_units=ct.ComputeUnit.CPU_AND_NE,
#     # function_name="length_64",
# )


def save_compiled(model):
    from shutil import copytree

    compiled_model_path = model.get_compiled_model_path()
    copytree(
        compiled_model_path,
        model.package_path.replace(".mlpackage", ".mlmodelc"),
        dirs_exist_ok=True,
    )


def min_p_sample(logits, min_p, temp):
    # logits = logits.astype(np.float16)
    max_ = np.max(logits * (1 / temp), axis=1, keepdims=True)
    logits = logits - max_
    logits = np.exp(logits)
    logits[logits < min_p] = 0
    # logits = logits.astype(np.float32)
    logits = np.cumsum(logits, axis=1)
    sample = np.random.uniform(high=logits[:, -1:])
    sample = np.argmax(logits > sample, axis=1).astype(np.int32)
    return sample


def build_causal_mask(seq_length, start, size, end):
    mask = np.full((1, 1, size, seq_length), np.array(-np.inf, dtype=np.float16))
    i, h, j, k = np.indices(mask.shape)
    mask[((k <= (j + start)) & (j < end)) | ((j >= end) & (k == 0))] = (
        0  # fill first columns with ones to prevent softmax division by 0
    )
    return mask


if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

mask = build_causal_mask(512, 0, 512, 512)

max_length = 40
# length = len(tokenizer(args.prompt)["input_ids"])
prompt = [{"role": "user", "content": args.prompt}]
length = len(tokenizer.apply_chat_template(prompt, add_generation_prompt=True))
print("Prompt length:", length)
input_ids = tokenizer.apply_chat_template(
    prompt,
    return_tensors="np",
    padding=True,
    # max_length=max_length,
    return_dict=True,
    add_generation_prompt=True,
    tokenizer_kwargs={
        # "padding": True,
        "pad_to_multiple_of": max_length,
    },
)["input_ids"].astype(np.int32)
# input_ids = tokenizer(
#     args.prompt,
#     return_tensors="np",
#     padding="max_length",
#     max_length=max_length,
# )["input_ids"].astype(np.int32)
print("Prompt:\n", tokenizer.decode(input_ids[0]))
state = model_40.make_state()
start = time.time()
for i in range(math.ceil(length / max_length)):
    input_embs = emb_model.predict(
        {"input_ids": input_ids[:, i * max_length : (i + 1) * max_length]}
    )["input_embeddings_channels_first"].astype(np.float16)
    pred = model_40.predict(
        {
            "input_ids": input_embs,
            "query_pos1": np.array([i * max_length], dtype=np.int32),
            "mask": mask[:, :, i * max_length : (i + 1) * max_length],
            # "indices": np.array([0], dtype=np.int32),
            "indices": np.arange(i * max_length, (i + 1) * max_length, dtype=np.int32),
        },
        state,
    )
prompt_time = time.time() - start
pred = model_head.predict(
    {"hidden_states": pred["final_norm_rmsnorm"][..., [length % max_length - 1]].astype(np.float16)}
)
# input_ids = pred["logits"][..., length - 1].argmax(1, keepdims=True).astype(np.int32)
# logits = pred["logits"][..., [length - 1]]
logits = pred["concat_0"]
input_ids = min_p_sample(logits, args.min_p, args.temp)
print("Generated:")
print(tokenizer.decode(input_ids[0]), end="", flush=True)
start = time.time()
for i in range(args.max_tokens):
    input_embs = emb_model.predict({"input_ids": input_ids})[
        "input_embeddings_channels_first"
    ].astype(np.float16)
    pred = model_1.predict(
        {
            "input_ids": input_embs,
            "query_pos1": np.array([i + length], dtype=np.int32),
            "mask": mask[:, :, [i + length]],
            "indices": np.array([i + length], dtype=np.int32),
        },
        state,
    )
    pred = model_head.predict(
        {"hidden_states": pred["final_norm_rmsnorm"].astype(np.float16)}
    )
    # input_ids = min_p_sample(pred["logits"], args.min_p, args.temp)
    input_ids = min_p_sample(pred["concat_0"], args.min_p, args.temp)
    # input_ids = pred["logits"].argmax(1).astype(np.int32)
    print(tokenizer.decode(input_ids[0]), end="", flush=True)
print("", "=" * 10)
generation_time = time.time() - start

print(
    "Prompt:",
    length / prompt_time,
    "tokens-per-sec",
    f"({math.ceil(length / max_length) * max_length / prompt_time} considering the processed padding)",
)
print("Generation:", args.max_tokens / generation_time, "tokens-per-sec")