Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import logging
|
3 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
4 |
+
from sentence_transformers import (
|
5 |
+
SentenceTransformer,
|
6 |
+
SentenceTransformerTrainer,
|
7 |
+
SentenceTransformerTrainingArguments,
|
8 |
+
SentenceTransformerModelCardData,
|
9 |
+
)
|
10 |
+
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
|
11 |
+
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
|
12 |
+
from sentence_transformers.evaluation import NanoBEIREvaluator
|
13 |
+
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
|
14 |
+
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
|
17 |
+
logging.basicConfig(
|
18 |
+
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
|
19 |
+
)
|
20 |
+
random.seed(12)
|
21 |
+
|
22 |
+
|
23 |
+
def main():
|
24 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
25 |
+
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("google-bert/bert-base-uncased"), embedding_dim=1024)
|
26 |
+
model = SentenceTransformer(
|
27 |
+
modules=[static_embedding],
|
28 |
+
model_card_data=SentenceTransformerModelCardData(
|
29 |
+
language="en",
|
30 |
+
license="apache-2.0",
|
31 |
+
model_name="Static Embeddings with BERT uncased tokenizer finetuned on various datasets",
|
32 |
+
),
|
33 |
+
)
|
34 |
+
|
35 |
+
# 3. Set up training & evaluation datasets - each dataset is trained with MNRL (with MRL)
|
36 |
+
print("Loading gooaq dataset...")
|
37 |
+
gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
|
38 |
+
gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
|
39 |
+
gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
|
40 |
+
gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
|
41 |
+
print("Loaded gooaq dataset.")
|
42 |
+
|
43 |
+
print("Loading msmarco dataset...")
|
44 |
+
msmarco_dataset = load_dataset("sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1", "triplet", split="train")
|
45 |
+
msmarco_dataset_dict = msmarco_dataset.train_test_split(test_size=10_000, seed=12)
|
46 |
+
msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
|
47 |
+
msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
|
48 |
+
print("Loaded msmarco dataset.")
|
49 |
+
|
50 |
+
print("Loading squad dataset...")
|
51 |
+
squad_dataset = load_dataset("sentence-transformers/squad", split="train")
|
52 |
+
squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
|
53 |
+
squad_train_dataset: Dataset = squad_dataset_dict["train"]
|
54 |
+
squad_eval_dataset: Dataset = squad_dataset_dict["test"]
|
55 |
+
print("Loaded squad dataset.")
|
56 |
+
|
57 |
+
print("Loading s2orc dataset...")
|
58 |
+
s2orc_dataset = load_dataset("sentence-transformers/s2orc", "title-abstract-pair", split="train[:100000]")
|
59 |
+
s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
|
60 |
+
s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
|
61 |
+
s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
|
62 |
+
print("Loaded s2orc dataset.")
|
63 |
+
|
64 |
+
print("Loading allnli dataset...")
|
65 |
+
allnli_train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train")
|
66 |
+
allnli_eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev")
|
67 |
+
print("Loaded allnli dataset.")
|
68 |
+
|
69 |
+
print("Loading paq dataset...")
|
70 |
+
paq_dataset = load_dataset("sentence-transformers/paq", split="train")
|
71 |
+
paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
|
72 |
+
paq_train_dataset: Dataset = paq_dataset_dict["train"]
|
73 |
+
paq_eval_dataset: Dataset = paq_dataset_dict["test"]
|
74 |
+
print("Loaded paq dataset.")
|
75 |
+
|
76 |
+
print("Loading trivia_qa dataset...")
|
77 |
+
trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
|
78 |
+
trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
|
79 |
+
trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
|
80 |
+
trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
|
81 |
+
print("Loaded trivia_qa dataset.")
|
82 |
+
|
83 |
+
print("Loading msmarco_10m dataset...")
|
84 |
+
msmarco_10m_dataset = load_dataset("bclavie/msmarco-10m-triplets", split="train")
|
85 |
+
msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(test_size=10_000, seed=12)
|
86 |
+
msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
|
87 |
+
msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
|
88 |
+
print("Loaded msmarco_10m dataset.")
|
89 |
+
|
90 |
+
print("Loading swim_ir dataset...")
|
91 |
+
swim_ir_dataset = load_dataset("nthakur/swim-ir-monolingual", "en", split="train").select_columns(["query", "text"])
|
92 |
+
swim_ir_dataset_dict = swim_ir_dataset.train_test_split(test_size=10_000, seed=12)
|
93 |
+
swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
|
94 |
+
swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
|
95 |
+
print("Loaded swim_ir dataset.")
|
96 |
+
|
97 |
+
# NOTE: 20 negatives
|
98 |
+
print("Loading pubmedqa dataset...")
|
99 |
+
pubmedqa_dataset = load_dataset("sentence-transformers/pubmedqa", "triplet-20", split="train")
|
100 |
+
pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(test_size=100, seed=12)
|
101 |
+
pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
|
102 |
+
pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
|
103 |
+
print("Loaded pubmedqa dataset.")
|
104 |
+
|
105 |
+
# NOTE: A lot of overlap with anchor/positives
|
106 |
+
print("Loading miracl dataset...")
|
107 |
+
miracl_dataset = load_dataset("sentence-transformers/miracl", "en-triplet-all", split="train")
|
108 |
+
miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
|
109 |
+
miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
|
110 |
+
miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
|
111 |
+
print("Loaded miracl dataset.")
|
112 |
+
|
113 |
+
# NOTE: A lot of overlap with anchor/positives
|
114 |
+
print("Loading mldr dataset...")
|
115 |
+
mldr_dataset = load_dataset("sentence-transformers/mldr", "en-triplet-all", split="train")
|
116 |
+
mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
|
117 |
+
mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
|
118 |
+
mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
|
119 |
+
print("Loaded mldr dataset.")
|
120 |
+
|
121 |
+
# NOTE: A lot of overlap with anchor/positives
|
122 |
+
print("Loading mr_tydi dataset...")
|
123 |
+
mr_tydi_dataset = load_dataset("sentence-transformers/mr-tydi", "en-triplet-all", split="train")
|
124 |
+
mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(test_size=10_000, seed=12)
|
125 |
+
mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
|
126 |
+
mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
|
127 |
+
print("Loaded mr_tydi dataset.")
|
128 |
+
|
129 |
+
train_dataset = DatasetDict({
|
130 |
+
"gooaq": gooaq_train_dataset,
|
131 |
+
"msmarco": msmarco_train_dataset,
|
132 |
+
"squad": squad_train_dataset,
|
133 |
+
"s2orc": s2orc_train_dataset,
|
134 |
+
"allnli": allnli_train_dataset,
|
135 |
+
"paq": paq_train_dataset,
|
136 |
+
"trivia_qa": trivia_qa_train_dataset,
|
137 |
+
"msmarco_10m": msmarco_10m_train_dataset,
|
138 |
+
"swim_ir": swim_ir_train_dataset,
|
139 |
+
"pubmedqa": pubmedqa_train_dataset,
|
140 |
+
"miracl": miracl_train_dataset,
|
141 |
+
"mldr": mldr_train_dataset,
|
142 |
+
"mr_tydi": mr_tydi_train_dataset,
|
143 |
+
})
|
144 |
+
eval_dataset = {
|
145 |
+
"gooaq": gooaq_eval_dataset,
|
146 |
+
"msmarco": msmarco_eval_dataset,
|
147 |
+
"squad": squad_eval_dataset,
|
148 |
+
"s2orc": s2orc_eval_dataset,
|
149 |
+
"allnli": allnli_eval_dataset,
|
150 |
+
"paq": paq_eval_dataset,
|
151 |
+
"trivia_qa": trivia_qa_eval_dataset,
|
152 |
+
"msmarco_10m": msmarco_10m_eval_dataset,
|
153 |
+
"swim_ir": swim_ir_eval_dataset,
|
154 |
+
"pubmedqa": pubmedqa_eval_dataset,
|
155 |
+
"miracl": miracl_eval_dataset,
|
156 |
+
"mldr": mldr_eval_dataset,
|
157 |
+
"mr_tydi": mr_tydi_eval_dataset,
|
158 |
+
}
|
159 |
+
print(train_dataset)
|
160 |
+
|
161 |
+
# 4. Define a loss function
|
162 |
+
loss = MultipleNegativesRankingLoss(model)
|
163 |
+
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
|
164 |
+
|
165 |
+
# 5. (Optional) Specify training arguments
|
166 |
+
run_name = "static-retrieval-mrl-en-v1"
|
167 |
+
args = SentenceTransformerTrainingArguments(
|
168 |
+
# Required parameter:
|
169 |
+
output_dir=f"models/{run_name}",
|
170 |
+
# Optional training parameters:
|
171 |
+
num_train_epochs=1,
|
172 |
+
per_device_train_batch_size=2048,
|
173 |
+
per_device_eval_batch_size=2048,
|
174 |
+
learning_rate=2e-1,
|
175 |
+
warmup_ratio=0.1,
|
176 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
177 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
178 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
179 |
+
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
|
180 |
+
# Optional tracking/debugging parameters:
|
181 |
+
eval_strategy="steps",
|
182 |
+
eval_steps=250,
|
183 |
+
save_strategy="steps",
|
184 |
+
save_steps=250,
|
185 |
+
save_total_limit=2,
|
186 |
+
logging_steps=250,
|
187 |
+
logging_first_step=True,
|
188 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
189 |
+
)
|
190 |
+
|
191 |
+
# 6. (Optional) Create an evaluator & evaluate the base model
|
192 |
+
evaluator = NanoBEIREvaluator()
|
193 |
+
evaluator(model)
|
194 |
+
|
195 |
+
# 7. Create a trainer & train
|
196 |
+
trainer = SentenceTransformerTrainer(
|
197 |
+
model=model,
|
198 |
+
args=args,
|
199 |
+
train_dataset=train_dataset,
|
200 |
+
eval_dataset=eval_dataset,
|
201 |
+
loss=loss,
|
202 |
+
evaluator=evaluator,
|
203 |
+
)
|
204 |
+
trainer.train()
|
205 |
+
|
206 |
+
# (Optional) Evaluate the trained model on the evaluator after training
|
207 |
+
evaluator(model)
|
208 |
+
|
209 |
+
# 8. Save the trained model
|
210 |
+
model.save_pretrained(f"models/{run_name}/final")
|
211 |
+
|
212 |
+
# 9. (Optional) Push it to the Hugging Face Hub
|
213 |
+
model.push_to_hub(run_name, private=True)
|
214 |
+
|
215 |
+
if __name__ == "__main__":
|
216 |
+
main()
|