sergeipetrov
commited on
Create handler.py
Browse files- handler.py +109 -0
handler.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
from pyannote.audio import Pipeline
|
6 |
+
from transformers import pipeline, AutoModelForCausalLM
|
7 |
+
from diarization_utils import diarize
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
10 |
+
from pydantic import Json, BaseModel, ValidationError
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class InferenceConfig(BaseModel):
|
17 |
+
task: Literal["transcribe", "translate"] = "transcribe"
|
18 |
+
batch_size: int = 24
|
19 |
+
assisted: bool = False
|
20 |
+
chunk_length_s: int = 30
|
21 |
+
sampling_rate: int = 16000
|
22 |
+
language: Optional[str] = None
|
23 |
+
num_speakers: Optional[int] = None
|
24 |
+
min_speakers: Optional[int] = None
|
25 |
+
max_speakers: Optional[int] = None
|
26 |
+
|
27 |
+
|
28 |
+
class EndpointHandler():
|
29 |
+
def __init__(self):
|
30 |
+
|
31 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
32 |
+
logger.info(f"Using device: {device.type}")
|
33 |
+
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16
|
34 |
+
|
35 |
+
self.assistant_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
os.getenv("ASSISTANT_MODEL"),
|
37 |
+
torch_dtype=torch_dtype,
|
38 |
+
low_cpu_mem_usage=True,
|
39 |
+
use_safetensors=True
|
40 |
+
) if os.getenv("ASSISTANT_MODEL") else None
|
41 |
+
|
42 |
+
if self.assistant_model:
|
43 |
+
self.assistant_model.to(device)
|
44 |
+
|
45 |
+
self.asr_pipeline = pipeline(
|
46 |
+
"automatic-speech-recognition",
|
47 |
+
model=os.getenv("ASR_MODEL"),
|
48 |
+
torch_dtype=torch_dtype,
|
49 |
+
device=device
|
50 |
+
)
|
51 |
+
|
52 |
+
if os.getenv("DIARIZATION_MODEL"):
|
53 |
+
# diarization pipeline doesn't raise if there is no token
|
54 |
+
HfApi().whoami(model_settings.hf_token)
|
55 |
+
self.diarization_pipeline = Pipeline.from_pretrained(
|
56 |
+
checkpoint_path=os.getenv("DIARIZATION_MODEL"),
|
57 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
58 |
+
)
|
59 |
+
self.diarization_pipeline.to(device)
|
60 |
+
else:
|
61 |
+
self.diarization_pipeline = None
|
62 |
+
|
63 |
+
async def __call__(self, file, parameters):
|
64 |
+
try:
|
65 |
+
parameters = InferenceConfig(**parameters)
|
66 |
+
except ValidationError as e:
|
67 |
+
logger.error(f"Error validating parameters: {e}")
|
68 |
+
raise ValidationError(f"Error validating parameters: {e}")
|
69 |
+
|
70 |
+
logger.info(f"inference parameters: {parameters}")
|
71 |
+
|
72 |
+
generate_kwargs = {
|
73 |
+
"task": parameters.task,
|
74 |
+
"language": parameters.language,
|
75 |
+
"assistant_model": self.assistant_model if parameters.assisted else None
|
76 |
+
}
|
77 |
+
|
78 |
+
try:
|
79 |
+
asr_outputs = self.asr_pipeline(
|
80 |
+
file,
|
81 |
+
chunk_length_s=parameters.chunk_length_s,
|
82 |
+
batch_size=parameters.batch_size,
|
83 |
+
generate_kwargs=generate_kwargs,
|
84 |
+
return_timestamps=True,
|
85 |
+
)
|
86 |
+
except RuntimeError as e:
|
87 |
+
logger.error(f"ASR inference error: {str(e)}")
|
88 |
+
raise HTTPException(status_code=400, detail=f"ASR inference error: {str(e)}")
|
89 |
+
except Exception as e:
|
90 |
+
logger.error(f"Unknown error diring ASR inference: {str(e)}")
|
91 |
+
raise HTTPException(status_code=500, detail=f"Unknown error diring ASR inference: {str(e)}")
|
92 |
+
|
93 |
+
if self.diarization_pipeline:
|
94 |
+
try:
|
95 |
+
transcript = diarize(self.diarization_pipeline, file, parameters, asr_outputs)
|
96 |
+
except RuntimeError as e:
|
97 |
+
logger.error(f"Diarization inference error: {str(e)}")
|
98 |
+
raise HTTPException(status_code=400, detail=f"Diarization inference error: {str(e)}")
|
99 |
+
except Exception as e:
|
100 |
+
logger.error(f"Unknown error during diarization: {str(e)}")
|
101 |
+
raise HTTPException(status_code=500, detail=f"Unknown error during diarization: {str(e)}")
|
102 |
+
else:
|
103 |
+
transcript = []
|
104 |
+
|
105 |
+
return {
|
106 |
+
"speakers": transcript,
|
107 |
+
"chunks": asr_outputs["chunks"],
|
108 |
+
"text": asr_outputs["text"],
|
109 |
+
}
|