File size: 4,313 Bytes
c775926
4666d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627970c
4666d66
 
627970c
c775926
4666d66
 
 
 
 
 
 
 
627970c
 
 
 
 
 
 
 
4666d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627970c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4666d66
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: dit-base-finetuned-brs
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8235294117647058
    - name: F1
      type: f1
      value: 0.8421052631578948
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base-finetuned-brs

This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2679
- Accuracy: 0.8235
- F1: 0.8421
- Precision (ppv): 0.8889
- Recall (sensitivity): 0.8
- Specificity: 0.8571
- Npv: 0.75
- Auc: 0.8286

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision (ppv) | Recall (sensitivity) | Specificity | Npv    | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------------:|:--------------------:|:-----------:|:------:|:------:|
| 0.6951        | 6.25  | 100  | 0.7100          | 0.4706   | 0.4    | 0.6             | 0.3                  | 0.7143      | 0.4167 | 0.5071 |
| 0.5094        | 12.49 | 200  | 0.6511          | 0.5294   | 0.6    | 0.6             | 0.6                  | 0.4286      | 0.4286 | 0.5143 |
| 0.5338        | 18.74 | 300  | 0.6113          | 0.6471   | 0.6667 | 0.75            | 0.6                  | 0.7143      | 0.5556 | 0.6571 |
| 0.444         | 24.98 | 400  | 0.7057          | 0.6471   | 0.625  | 0.8333          | 0.5                  | 0.8571      | 0.5455 | 0.6786 |
| 0.3877        | 31.25 | 500  | 0.7836          | 0.7059   | 0.7368 | 0.7778          | 0.7                  | 0.7143      | 0.625  | 0.7071 |
| 0.6238        | 37.49 | 600  | 0.8340          | 0.7059   | 0.6667 | 1.0             | 0.5                  | 1.0         | 0.5833 | 0.75   |
| 0.6856        | 43.74 | 700  | 1.0278          | 0.7647   | 0.8000 | 0.8             | 0.8                  | 0.7143      | 0.7143 | 0.7571 |
| 0.487         | 49.98 | 800  | 1.0279          | 0.7647   | 0.7778 | 0.875           | 0.7                  | 0.8571      | 0.6667 | 0.7786 |
| 0.4039        | 56.25 | 900  | 0.9028          | 0.7647   | 0.7778 | 0.875           | 0.7                  | 0.8571      | 0.6667 | 0.7786 |
| 0.2214        | 62.49 | 1000 | 0.6894          | 0.8235   | 0.8235 | 1.0             | 0.7                  | 1.0         | 0.7    | 0.85   |
| 0.7441        | 68.74 | 1100 | 1.1261          | 0.8235   | 0.8421 | 0.8889          | 0.8                  | 0.8571      | 0.75   | 0.8286 |
| 0.5714        | 74.98 | 1200 | 0.8956          | 0.8235   | 0.8235 | 1.0             | 0.7                  | 1.0         | 0.7    | 0.85   |
| 0.3093        | 81.25 | 1300 | 1.2498          | 0.7059   | 0.7059 | 0.8571          | 0.6                  | 0.8571      | 0.6    | 0.7286 |
| 0.6528        | 87.49 | 1400 | 1.6744          | 0.7647   | 0.7778 | 0.875           | 0.7                  | 0.8571      | 0.6667 | 0.7786 |
| 0.3314        | 93.74 | 1500 | 1.8034          | 0.7059   | 0.7059 | 0.8571          | 0.6                  | 0.8571      | 0.6    | 0.7286 |
| 0.3617        | 99.98 | 1600 | 1.2679          | 0.8235   | 0.8421 | 0.8889          | 0.8                  | 0.8571      | 0.75   | 0.8286 |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1