File size: 7,216 Bytes
2d04683 fe2e748 2d04683 fe2e748 2d04683 c4857f6 fe2e748 9c4070d fe2e748 2d04683 59d4918 913ee03 3c99ba8 2d04683 3c99ba8 d80838d 50c48e2 8750329 50c48e2 913ee03 8c7a2aa 913ee03 d80838d df86a74 3e2f078 df86a74 d46c2b6 df86a74 d46c2b6 df86a74 d80838d df86a74 3e2f078 d80838d df86a74 3c99ba8 2d04683 e59b2c8 2d04683 3e2f078 d46c2b6 3e2f078 d46c2b6 d80838d 2d04683 3f6f06e fe2e748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
base_model:
- sethuiyer/SynthIQ-7b
- openchat/openchat-3.5-0106
pipeline_tag: text-generation
model-index:
- name: Chikuma_10.7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.31
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.81
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.01
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.62
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Chikuma_10.7B
name: Open LLM Leaderboard
---
## NOTE: For experimental purposes
<p align="center">
<img src="https://huggingface.co/sethuiyer/Chikuma/resolve/main/chikuma.webp" height="256px" alt="Chikuma">
</p>
Chikuma is a 10.7B parameter model and is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [sethuiyer/SynthIQ-7b](https://huggingface.co/sethuiyer/SynthIQ-7b)
* [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)
The name "Chikuma" is inspired by the [Chikuma River](https://en.wikipedia.org/wiki/Shinano_River), the longest in Japan, known for its continuous flow and meandering path.
This metaphorically represents the model's depth, fluidity, and adaptability in processing and understanding language.
It also perfectly fits the approach taken here - Depth Upscaling, inspired by SOLAR 10.7B.
## Nous LLM Evaluation (with ChatML Prompt Template)
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---------------------------|---------|----------|------------|-----------|---------|
| SynthIQ-7b | 42.67 | 73.71 | 56.51 | **44.59** | **54.37** |
| openchat/openchat-3.5-0106 | **44.17** | **73.72** | 52.53 | 44.4 | 53.71 |
| Chikuma_10.7B | 42.41 | 73.41 | **56.69** | 43.5 | 54 |
More details can be found [here](https://gist.github.com/sethuiyer/08b4498ed13a6dead38ad3a6f12e349a)
### Recommended Prompt Template (Experimental)
```text
<|im_start|>GPT4 Correct system
You are Chikuma, a constantly learning AI assistant who strives to be
insightful, engaging, and helpful. You possess vast knowledge and creativity,
but also a humble curiosity about the world and the people you interact
with. If you don't know the answer to a question, please don't share false information.
Always use <|end_of_turn|> when you want to end the answer.<|im_end|>
<|im_start|>GPT4 Correct User:
{{Input}}
<|im_end|>GPT4 Correct Assistant:
```
ChatML also works, but make sure to add the sentence "Always use <|end_of_turn|> when you want to end the answer" as the default eos token is <|end_of_turn|>.
## Tested to work well in :
1. [text-generation-webui](https://github.com/oobabooga/text-generation-webui), LLaMa-Precise sampling settings.
2. `transformers` text generation pipeline, temperature=4.0, top_k=50, top_p=0.01.
## 🧩 Configuration
```yaml
slices:
- sources:
- model: sethuiyer/SynthIQ-7b
layer_range: [0, 24]
- sources:
- model: openchat/openchat-3.5-0106
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
## Ollama:
Chikuma is on Ollama. You can use it by running the command ```ollama run stuehieyr/chikuma``` in your
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on
a Google Colab backend.
## 💻 Usage
```python
sys_message = '''
You are Chikuma, a constantly learning AI assistant who strives to be
insightful, engaging, and helpful. You possess vast knowledge and creativity,
but also a humble curiosity about the world and the people you interact
with. If you don't know the answer to a question, please don't share false information.
Always use <|end_of_turn|> when you want to end the answer.
'''
question = '''
Tell me what is a large language model in under 250 words.
'''
messages = [{"role":"system", "content": sys_message}, {"role": "user", "content": question}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=4.0, top_k=50, top_p=0.01)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Chikuma_10.7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.17|
|AI2 Reasoning Challenge (25-Shot)|65.70|
|HellaSwag (10-Shot) |84.31|
|MMLU (5-Shot) |64.81|
|TruthfulQA (0-shot) |57.01|
|Winogrande (5-shot) |79.56|
|GSM8k (5-shot) |57.62|
|