Adding Evaluation Results (#1)
Browse files- Adding Evaluation Results (8d65fefd7fa8373c0848d1e6980c7b6e3c77bef0)
Co-authored-by: Open LLM Leaderboard PR Bot <[email protected]>
README.md
CHANGED
@@ -1,21 +1,124 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: cc-by-nc-nd-4.0
|
|
|
3 |
tags:
|
4 |
- moe
|
5 |
- merge
|
6 |
- medical
|
7 |
- mergekit
|
8 |
-
base_model:
|
9 |
-
- sethuiyer/Dr_Samantha_7b_mistral
|
10 |
-
- fblgit/UNA-TheBeagle-7b-v1
|
11 |
-
language:
|
12 |
-
- en
|
13 |
datasets:
|
14 |
- medmcqa
|
15 |
- cognitivecomputations/samantha-data
|
16 |
- jondurbin/bagel-v0.3
|
17 |
-
|
|
|
|
|
18 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
---
|
20 |
|
21 |
# MedleyMD
|
@@ -114,4 +217,17 @@ It is composed of a topmost gating network that assigns weights to each expert n
|
|
114 |
The expert networks are trained independently, and the gating network learns to choose the best combination of these experts to make the final prediction.
|
115 |
Mixout demonstrates a stronger ability to handle complex data distributions and is more efficient in terms of training time and memory usage compared to a
|
116 |
traditional ensemble approach.
|
117 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: cc-by-nc-nd-4.0
|
5 |
+
library_name: transformers
|
6 |
tags:
|
7 |
- moe
|
8 |
- merge
|
9 |
- medical
|
10 |
- mergekit
|
|
|
|
|
|
|
|
|
|
|
11 |
datasets:
|
12 |
- medmcqa
|
13 |
- cognitivecomputations/samantha-data
|
14 |
- jondurbin/bagel-v0.3
|
15 |
+
base_model:
|
16 |
+
- sethuiyer/Dr_Samantha_7b_mistral
|
17 |
+
- fblgit/UNA-TheBeagle-7b-v1
|
18 |
pipeline_tag: text-generation
|
19 |
+
model-index:
|
20 |
+
- name: MedleyMD
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-generation
|
24 |
+
name: Text Generation
|
25 |
+
dataset:
|
26 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
27 |
+
type: ai2_arc
|
28 |
+
config: ARC-Challenge
|
29 |
+
split: test
|
30 |
+
args:
|
31 |
+
num_few_shot: 25
|
32 |
+
metrics:
|
33 |
+
- type: acc_norm
|
34 |
+
value: 66.47
|
35 |
+
name: normalized accuracy
|
36 |
+
source:
|
37 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
|
38 |
+
name: Open LLM Leaderboard
|
39 |
+
- task:
|
40 |
+
type: text-generation
|
41 |
+
name: Text Generation
|
42 |
+
dataset:
|
43 |
+
name: HellaSwag (10-Shot)
|
44 |
+
type: hellaswag
|
45 |
+
split: validation
|
46 |
+
args:
|
47 |
+
num_few_shot: 10
|
48 |
+
metrics:
|
49 |
+
- type: acc_norm
|
50 |
+
value: 86.06
|
51 |
+
name: normalized accuracy
|
52 |
+
source:
|
53 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
|
54 |
+
name: Open LLM Leaderboard
|
55 |
+
- task:
|
56 |
+
type: text-generation
|
57 |
+
name: Text Generation
|
58 |
+
dataset:
|
59 |
+
name: MMLU (5-Shot)
|
60 |
+
type: cais/mmlu
|
61 |
+
config: all
|
62 |
+
split: test
|
63 |
+
args:
|
64 |
+
num_few_shot: 5
|
65 |
+
metrics:
|
66 |
+
- type: acc
|
67 |
+
value: 65.1
|
68 |
+
name: accuracy
|
69 |
+
source:
|
70 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
|
71 |
+
name: Open LLM Leaderboard
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
name: Text Generation
|
75 |
+
dataset:
|
76 |
+
name: TruthfulQA (0-shot)
|
77 |
+
type: truthful_qa
|
78 |
+
config: multiple_choice
|
79 |
+
split: validation
|
80 |
+
args:
|
81 |
+
num_few_shot: 0
|
82 |
+
metrics:
|
83 |
+
- type: mc2
|
84 |
+
value: 52.46
|
85 |
+
source:
|
86 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
|
87 |
+
name: Open LLM Leaderboard
|
88 |
+
- task:
|
89 |
+
type: text-generation
|
90 |
+
name: Text Generation
|
91 |
+
dataset:
|
92 |
+
name: Winogrande (5-shot)
|
93 |
+
type: winogrande
|
94 |
+
config: winogrande_xl
|
95 |
+
split: validation
|
96 |
+
args:
|
97 |
+
num_few_shot: 5
|
98 |
+
metrics:
|
99 |
+
- type: acc
|
100 |
+
value: 80.27
|
101 |
+
name: accuracy
|
102 |
+
source:
|
103 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
|
104 |
+
name: Open LLM Leaderboard
|
105 |
+
- task:
|
106 |
+
type: text-generation
|
107 |
+
name: Text Generation
|
108 |
+
dataset:
|
109 |
+
name: GSM8k (5-shot)
|
110 |
+
type: gsm8k
|
111 |
+
config: main
|
112 |
+
split: test
|
113 |
+
args:
|
114 |
+
num_few_shot: 5
|
115 |
+
metrics:
|
116 |
+
- type: acc
|
117 |
+
value: 68.99
|
118 |
+
name: accuracy
|
119 |
+
source:
|
120 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
|
121 |
+
name: Open LLM Leaderboard
|
122 |
---
|
123 |
|
124 |
# MedleyMD
|
|
|
217 |
The expert networks are trained independently, and the gating network learns to choose the best combination of these experts to make the final prediction.
|
218 |
Mixout demonstrates a stronger ability to handle complex data distributions and is more efficient in terms of training time and memory usage compared to a
|
219 |
traditional ensemble approach.
|
220 |
+
```
|
221 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
222 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__MedleyMD)
|
223 |
+
|
224 |
+
| Metric |Value|
|
225 |
+
|---------------------------------|----:|
|
226 |
+
|Avg. |69.89|
|
227 |
+
|AI2 Reasoning Challenge (25-Shot)|66.47|
|
228 |
+
|HellaSwag (10-Shot) |86.06|
|
229 |
+
|MMLU (5-Shot) |65.10|
|
230 |
+
|TruthfulQA (0-shot) |52.46|
|
231 |
+
|Winogrande (5-shot) |80.27|
|
232 |
+
|GSM8k (5-shot) |68.99|
|
233 |
+
|