PPO playing HalfCheetahBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c
872aa5c
import numpy as np | |
import torch | |
import torch.nn as nn | |
from dataclasses import asdict, dataclass | |
from torch.optim import Adam | |
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from typing import List, Optional, Sequence, NamedTuple, TypeVar | |
from shared.algorithm import Algorithm | |
from shared.callbacks.callback import Callback | |
from shared.policy.on_policy import ActorCritic | |
from shared.schedule import constant_schedule, linear_schedule | |
from shared.trajectory import Trajectory as BaseTrajectory | |
from shared.utils import discounted_cumsum | |
class PPOTrajectory(BaseTrajectory): | |
logp_a: List[float] | |
next_obs: Optional[np.ndarray] | |
def __init__(self) -> None: | |
super().__init__() | |
self.logp_a = [] | |
self.next_obs = None | |
def add( | |
self, | |
obs: np.ndarray, | |
act: np.ndarray, | |
next_obs: np.ndarray, | |
rew: float, | |
terminated: bool, | |
v: float, | |
logp_a: float, | |
): | |
super().add(obs, act, rew, v) | |
self.next_obs = next_obs if not terminated else None | |
self.terminated = terminated | |
self.logp_a.append(logp_a) | |
class TrajectoryAccumulator: | |
def __init__(self, num_envs: int) -> None: | |
self.num_envs = num_envs | |
self.trajectories_ = [] | |
self.current_trajectories_ = [PPOTrajectory() for _ in range(num_envs)] | |
def step( | |
self, | |
obs: VecEnvObs, | |
action: np.ndarray, | |
next_obs: VecEnvObs, | |
reward: np.ndarray, | |
done: np.ndarray, | |
val: np.ndarray, | |
logp_a: np.ndarray, | |
) -> None: | |
assert isinstance(obs, np.ndarray) | |
assert isinstance(next_obs, np.ndarray) | |
for i, trajectory in enumerate(self.current_trajectories_): | |
# TODO: Eventually take advantage of terminated/truncated differentiation in | |
# later versions of gym. | |
trajectory.add( | |
obs[i], action[i], next_obs[i], reward[i], done[i], val[i], logp_a[i] | |
) | |
if done[i]: | |
self.trajectories_.append(trajectory) | |
self.current_trajectories_[i] = PPOTrajectory() | |
def all_trajectories(self) -> List[PPOTrajectory]: | |
return self.trajectories_ + list( | |
filter(lambda t: len(t), self.current_trajectories_) | |
) | |
class RtgAdvantage(NamedTuple): | |
rewards_to_go: torch.Tensor | |
advantage: torch.Tensor | |
class TrainStepStats(NamedTuple): | |
loss: float | |
pi_loss: float | |
v_loss: float | |
entropy_loss: float | |
approx_kl: float | |
clipped_frac: float | |
class TrainStats: | |
loss: float | |
pi_loss: float | |
v_loss: float | |
entropy_loss: float | |
approx_kl: float | |
clipped_frac: float | |
def __init__(self, step_stats: List[TrainStepStats]) -> None: | |
self.loss = np.mean([s.loss for s in step_stats]).item() | |
self.pi_loss = np.mean([s.pi_loss for s in step_stats]).item() | |
self.v_loss = np.mean([s.v_loss for s in step_stats]).item() | |
self.entropy_loss = np.mean([s.entropy_loss for s in step_stats]).item() | |
self.approx_kl = np.mean([s.approx_kl for s in step_stats]).item() | |
self.clipped_frac = np.mean([s.clipped_frac for s in step_stats]).item() | |
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None: | |
tb_writer.add_scalars("losses", asdict(self), global_step=global_step) | |
def __repr__(self) -> str: | |
return " | ".join( | |
[ | |
f"Loss: {round(self.loss, 2)}", | |
f"Pi L: {round(self.pi_loss, 2)}", | |
f"V L: {round(self.v_loss, 2)}", | |
f"E L: {round(self.entropy_loss, 2)}", | |
f"Apx KL Div: {round(self.approx_kl, 2)}", | |
f"Clip Frac: {round(self.clipped_frac, 2)}", | |
] | |
) | |
PPOSelf = TypeVar("PPOSelf", bound="PPO") | |
class PPO(Algorithm): | |
def __init__( | |
self, | |
policy: ActorCritic, | |
env: VecEnv, | |
device: torch.device, | |
tb_writer: SummaryWriter, | |
learning_rate: float = 3e-4, | |
learning_rate_decay: str = "none", | |
n_steps: int = 2048, | |
batch_size: int = 64, | |
n_epochs: int = 10, | |
gamma: float = 0.99, | |
gae_lambda: float = 0.95, | |
clip_range: float = 0.2, | |
clip_range_decay: str = "none", | |
clip_range_vf: Optional[float] = None, | |
clip_range_vf_decay: str = "none", | |
normalize_advantage: bool = True, | |
ent_coef: float = 0.0, | |
ent_coef_decay: str = "none", | |
vf_coef: float = 0.5, | |
max_grad_norm: float = 0.5, | |
update_rtg_between_epochs: bool = False, | |
sde_sample_freq: int = -1, | |
) -> None: | |
super().__init__(policy, env, device, tb_writer) | |
self.policy = policy | |
self.gamma = gamma | |
self.gae_lambda = gae_lambda | |
self.optimizer = Adam(self.policy.parameters(), lr=learning_rate) | |
self.lr_schedule = ( | |
linear_schedule(learning_rate, 0) | |
if learning_rate_decay == "linear" | |
else constant_schedule(learning_rate) | |
) | |
self.max_grad_norm = max_grad_norm | |
self.clip_range_schedule = ( | |
linear_schedule(clip_range, 0) | |
if clip_range_decay == "linear" | |
else constant_schedule(clip_range) | |
) | |
self.clip_range_vf_schedule = None | |
if clip_range_vf: | |
self.clip_range_vf_schedule = ( | |
linear_schedule(clip_range_vf, 0) | |
if clip_range_vf_decay == "linear" | |
else constant_schedule(clip_range_vf) | |
) | |
self.normalize_advantage = normalize_advantage | |
self.ent_coef_schedule = ( | |
linear_schedule(ent_coef, 0) | |
if ent_coef_decay == "linear" | |
else constant_schedule(ent_coef) | |
) | |
self.vf_coef = vf_coef | |
self.n_steps = n_steps | |
self.batch_size = batch_size | |
self.n_epochs = n_epochs | |
self.sde_sample_freq = sde_sample_freq | |
self.update_rtg_between_epochs = update_rtg_between_epochs | |
def learn( | |
self: PPOSelf, | |
total_timesteps: int, | |
callback: Optional[Callback] = None, | |
) -> PPOSelf: | |
obs = self.env.reset() | |
ts_elapsed = 0 | |
while ts_elapsed < total_timesteps: | |
accumulator = self._collect_trajectories(obs) | |
progress = ts_elapsed / total_timesteps | |
train_stats = self.train(accumulator.all_trajectories, progress) | |
rollout_steps = self.n_steps * self.env.num_envs | |
ts_elapsed += rollout_steps | |
train_stats.write_to_tensorboard(self.tb_writer, ts_elapsed) | |
if callback: | |
callback.on_step(timesteps_elapsed=rollout_steps) | |
return self | |
def _collect_trajectories(self, obs: VecEnvObs) -> TrajectoryAccumulator: | |
self.policy.eval() | |
accumulator = TrajectoryAccumulator(self.env.num_envs) | |
self.policy.reset_noise() | |
for i in range(self.n_steps): | |
if self.sde_sample_freq > 0 and i > 0 and i % self.sde_sample_freq == 0: | |
self.policy.reset_noise() | |
action, value, logp_a, clamped_action = self.policy.step(obs) | |
next_obs, reward, done, _ = self.env.step(clamped_action) | |
accumulator.step(obs, action, next_obs, reward, done, value, logp_a) | |
obs = next_obs | |
return accumulator | |
def train(self, trajectories: List[PPOTrajectory], progress: float) -> TrainStats: | |
self.policy.train() | |
learning_rate = self.lr_schedule(progress) | |
self.optimizer.param_groups[0]["lr"] = learning_rate | |
pi_clip = self.clip_range_schedule(progress) | |
v_clip = ( | |
self.clip_range_vf_schedule(progress) | |
if self.clip_range_vf_schedule | |
else None | |
) | |
ent_coef = self.ent_coef_schedule(progress) | |
obs = torch.as_tensor( | |
np.concatenate([np.array(t.obs) for t in trajectories]), device=self.device | |
) | |
act = torch.as_tensor( | |
np.concatenate([np.array(t.act) for t in trajectories]), device=self.device | |
) | |
rtg, adv = self._compute_rtg_and_advantage(trajectories) | |
orig_v = torch.as_tensor( | |
np.concatenate([np.array(t.v) for t in trajectories]), device=self.device | |
) | |
orig_logp_a = torch.as_tensor( | |
np.concatenate([np.array(t.logp_a) for t in trajectories]), | |
device=self.device, | |
) | |
step_stats = [] | |
for _ in range(self.n_epochs): | |
if self.update_rtg_between_epochs: | |
rtg, adv = self._compute_rtg_and_advantage(trajectories) | |
else: | |
adv = self._compute_advantage(trajectories) | |
idxs = torch.randperm(len(obs)) | |
for i in range(0, len(obs), self.batch_size): | |
mb_idxs = idxs[i : i + self.batch_size] | |
mb_adv = adv[mb_idxs] | |
if self.normalize_advantage: | |
mb_adv = (mb_adv - mb_adv.mean(-1)) / (mb_adv.std(-1) + 1e-8) | |
step_stats.append( | |
self._train_step( | |
pi_clip, | |
v_clip, | |
ent_coef, | |
obs[mb_idxs], | |
act[mb_idxs], | |
rtg[mb_idxs], | |
mb_adv, | |
orig_v[mb_idxs], | |
orig_logp_a[mb_idxs], | |
) | |
) | |
return TrainStats(step_stats) | |
def _train_step( | |
self, | |
pi_clip: float, | |
v_clip: Optional[float], | |
ent_coef: float, | |
obs: torch.Tensor, | |
act: torch.Tensor, | |
rtg: torch.Tensor, | |
adv: torch.Tensor, | |
orig_v: torch.Tensor, | |
orig_logp_a: torch.Tensor, | |
) -> TrainStepStats: | |
logp_a, entropy, v = self.policy(obs, act) | |
logratio = logp_a - orig_logp_a | |
ratio = torch.exp(logratio) | |
clip_ratio = torch.clamp(ratio, min=1 - pi_clip, max=1 + pi_clip) | |
pi_loss = torch.maximum(-ratio * adv, -clip_ratio * adv).mean() | |
v_loss = (v - rtg).pow(2) | |
if v_clip: | |
v_clipped = (torch.clamp(v, orig_v - v_clip, orig_v + v_clip) - rtg).pow(2) | |
v_loss = torch.maximum(v_loss, v_clipped) | |
v_loss = v_loss.mean() | |
entropy_loss = entropy.mean() | |
loss = pi_loss - ent_coef * entropy_loss + self.vf_coef * v_loss | |
self.optimizer.zero_grad() | |
loss.backward() | |
nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) | |
self.optimizer.step() | |
with torch.no_grad(): | |
approx_kl = ((ratio - 1) - logratio).mean().cpu().numpy().item() | |
clipped_frac = ( | |
((ratio - 1).abs() > pi_clip).float().mean().cpu().numpy().item() | |
) | |
return TrainStepStats( | |
loss.item(), | |
pi_loss.item(), | |
v_loss.item(), | |
entropy_loss.item(), | |
approx_kl, | |
clipped_frac, | |
) | |
def _compute_advantage(self, trajectories: Sequence[PPOTrajectory]) -> torch.Tensor: | |
advantage = [] | |
for traj in trajectories: | |
last_val = 0 | |
if not traj.terminated and traj.next_obs is not None: | |
last_val = self.policy.value(np.array(traj.next_obs)) | |
rew = np.append(np.array(traj.rew), last_val) | |
v = np.append(np.array(traj.v), last_val) | |
deltas = rew[:-1] + self.gamma * v[1:] - v[:-1] | |
advantage.append(discounted_cumsum(deltas, self.gamma * self.gae_lambda)) | |
return torch.as_tensor( | |
np.concatenate(advantage), dtype=torch.float32, device=self.device | |
) | |
def _compute_rtg_and_advantage( | |
self, trajectories: Sequence[PPOTrajectory] | |
) -> RtgAdvantage: | |
rewards_to_go = [] | |
advantages = [] | |
for traj in trajectories: | |
last_val = 0 | |
if not traj.terminated and traj.next_obs is not None: | |
last_val = self.policy.value(np.array(traj.next_obs)) | |
rew = np.append(np.array(traj.rew), last_val) | |
v = np.append(np.array(traj.v), last_val) | |
deltas = rew[:-1] + self.gamma * v[1:] - v[:-1] | |
adv = discounted_cumsum(deltas, self.gamma * self.gae_lambda) | |
advantages.append(adv) | |
rewards_to_go.append(v[:-1] + adv) | |
return RtgAdvantage( | |
torch.as_tensor( | |
np.concatenate(rewards_to_go), dtype=torch.float32, device=self.device | |
), | |
torch.as_tensor( | |
np.concatenate(advantages), dtype=torch.float32, device=self.device | |
), | |
) | |