PPO playing HalfCheetahBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c
872aa5c
import gym | |
import os | |
from gym.wrappers.resize_observation import ResizeObservation | |
from gym.wrappers.gray_scale_observation import GrayScaleObservation | |
from gym.wrappers.frame_stack import FrameStack | |
from stable_baselines3.common.atari_wrappers import ( | |
MaxAndSkipEnv, | |
NoopResetEnv, | |
) | |
from stable_baselines3.common.vec_env.base_vec_env import VecEnv | |
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv | |
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv | |
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from typing import Any, Callable, Dict, Optional, Union | |
from runner.config import Config | |
from shared.policy.policy import VEC_NORMALIZE_FILENAME | |
from wrappers.atari_wrappers import EpisodicLifeEnv, FireOnLifeStarttEnv, ClipRewardEnv | |
from wrappers.episode_record_video import EpisodeRecordVideo | |
from wrappers.episode_stats_writer import EpisodeStatsWriter | |
from wrappers.initial_step_truncate_wrapper import InitialStepTruncateWrapper | |
from wrappers.video_compat_wrapper import VideoCompatWrapper | |
def make_env( | |
config: Config, | |
training: bool = True, | |
render: bool = False, | |
normalize_load_path: Optional[str] = None, | |
n_envs: int = 1, | |
frame_stack: int = 1, | |
make_kwargs: Optional[Dict[str, Any]] = None, | |
no_reward_timeout_steps: Optional[int] = None, | |
no_reward_fire_steps: Optional[int] = None, | |
vec_env_class: str = "dummy", | |
normalize: bool = False, | |
normalize_kwargs: Optional[Dict[str, Any]] = None, | |
tb_writer: Optional[SummaryWriter] = None, | |
rolling_length: int = 100, | |
train_record_video: bool = False, | |
video_step_interval: Union[int, float] = 1_000_000, | |
initial_steps_to_truncate: Optional[int] = None, | |
) -> VecEnv: | |
if "BulletEnv" in config.env_id: | |
import pybullet_envs | |
make_kwargs = make_kwargs if make_kwargs is not None else {} | |
if "BulletEnv" in config.env_id and render: | |
make_kwargs["render"] = True | |
if "CarRacing" in config.env_id: | |
make_kwargs["verbose"] = 0 | |
spec = gym.spec(config.env_id) | |
def make(idx: int) -> Callable[[], gym.Env]: | |
def _make() -> gym.Env: | |
env = gym.make(config.env_id, **make_kwargs) | |
env = gym.wrappers.RecordEpisodeStatistics(env) | |
env = VideoCompatWrapper(env) | |
if training and train_record_video and idx == 0: | |
env = EpisodeRecordVideo( | |
env, | |
config.video_prefix, | |
step_increment=n_envs, | |
video_step_interval=int(video_step_interval), | |
) | |
if training and initial_steps_to_truncate: | |
env = InitialStepTruncateWrapper( | |
env, idx * initial_steps_to_truncate // n_envs | |
) | |
if "AtariEnv" in spec.entry_point: # type: ignore | |
env = NoopResetEnv(env, noop_max=30) | |
env = MaxAndSkipEnv(env, skip=4) | |
env = EpisodicLifeEnv(env, training=training) | |
action_meanings = env.unwrapped.get_action_meanings() | |
if "FIRE" in action_meanings: # type: ignore | |
env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE")) | |
env = ClipRewardEnv(env, training=training) | |
env = ResizeObservation(env, (84, 84)) | |
env = GrayScaleObservation(env, keep_dim=False) | |
env = FrameStack(env, frame_stack) | |
elif "CarRacing" in config.env_id: | |
env = ResizeObservation(env, (64, 64)) | |
env = GrayScaleObservation(env, keep_dim=False) | |
env = FrameStack(env, frame_stack) | |
if no_reward_timeout_steps: | |
from wrappers.no_reward_timeout import NoRewardTimeout | |
env = NoRewardTimeout( | |
env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps | |
) | |
seed = config.seed(training=training) | |
if seed is not None: | |
env.seed(seed + idx) | |
env.action_space.seed(seed + idx) | |
env.observation_space.seed(seed + idx) | |
return env | |
return _make | |
VecEnvClass = {"dummy": DummyVecEnv, "subproc": SubprocVecEnv}[vec_env_class] | |
venv = VecEnvClass([make(i) for i in range(n_envs)]) | |
if training: | |
assert tb_writer | |
venv = EpisodeStatsWriter( | |
venv, tb_writer, training=training, rolling_length=rolling_length | |
) | |
if normalize: | |
if normalize_load_path: | |
venv = VecNormalize.load( | |
os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME), venv | |
) | |
else: | |
venv = VecNormalize(venv, training=training, **(normalize_kwargs or {})) | |
if not training: | |
venv.norm_reward = False | |
return venv | |
def make_eval_env( | |
config: Config, override_n_envs: Optional[int] = None, **kwargs | |
) -> VecEnv: | |
kwargs = kwargs.copy() | |
kwargs["training"] = False | |
if override_n_envs is not None: | |
kwargs["n_envs"] = override_n_envs | |
if override_n_envs == 1: | |
kwargs["vec_env_class"] = "dummy" | |
return make_env(config, **kwargs) | |