vpg-QbertNoFrameskip-v4 / compare_runs.py
sgoodfriend's picture
VPG playing QbertNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/e8bc541d8b5e67bb4d3f2075282463fb61f5f2c6
11023c4
raw
history blame
5.89 kB
import argparse
import itertools
import numpy as np
import pandas as pd
import wandb
import wandb.apis.public
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, Iterable, List, TypeVar
from benchmark_publish import RunGroup
@dataclass
class Comparison:
control_values: List[float]
experiment_values: List[float]
def mean_diff_percentage(self) -> float:
return self._diff_percentage(
np.mean(self.control_values).item(), np.mean(self.experiment_values).item()
)
def median_diff_percentage(self) -> float:
return self._diff_percentage(
np.median(self.control_values).item(),
np.median(self.experiment_values).item(),
)
def _diff_percentage(self, c: float, e: float) -> float:
if c == e:
return 0
elif c == 0:
return float("inf") if e > 0 else float("-inf")
return 100 * (e - c) / c
def score(self) -> float:
return (
np.sum(
np.sign((self.mean_diff_percentage(), self.median_diff_percentage()))
).item()
/ 2
)
RunGroupRunsSelf = TypeVar("RunGroupRunsSelf", bound="RunGroupRuns")
class RunGroupRuns:
def __init__(
self,
run_group: RunGroup,
control: List[str],
experiment: List[str],
summary_stats: List[str] = ["best_eval", "eval", "train_rolling"],
summary_metrics: List[str] = ["mean", "result"],
) -> None:
self.algo = run_group.algo
self.env = run_group.env_id
self.control = set(control)
self.experiment = set(experiment)
self.summary_stats = summary_stats
self.summary_metrics = summary_metrics
self.control_runs = []
self.experiment_runs = []
def add_run(self, run: wandb.apis.public.Run) -> None:
wandb_tags = set(run.config.get("wandb_tags", []))
if self.control & wandb_tags:
self.control_runs.append(run)
elif self.experiment & wandb_tags:
self.experiment_runs.append(run)
def comparisons_by_metric(self) -> Dict[str, Comparison]:
c_by_m = {}
for metric in (
f"{s}_{m}"
for s, m in itertools.product(self.summary_stats, self.summary_metrics)
):
c_by_m[metric] = Comparison(
[c.summary[metric] for c in self.control_runs],
[e.summary[metric] for e in self.experiment_runs],
)
return c_by_m
@staticmethod
def data_frame(rows: Iterable[RunGroupRunsSelf]) -> pd.DataFrame:
results = defaultdict(list)
for r in rows:
if not r.control_runs or not r.experiment_runs:
continue
results["algo"].append(r.algo)
results["env"].append(r.env)
results["control"].append(r.control)
results["expierment"].append(r.experiment)
c_by_m = r.comparisons_by_metric()
results["score"].append(
sum(m.score() for m in c_by_m.values()) / len(c_by_m)
)
for m, c in c_by_m.items():
results[f"{m}_mean"].append(c.mean_diff_percentage())
results[f"{m}_median"].append(c.median_diff_percentage())
return pd.DataFrame(results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-p",
"--wandb-project-name",
type=str,
default="rl-algo-impls-benchmarks",
help="WandB project name to load runs from",
)
parser.add_argument(
"--wandb-entity",
type=str,
default=None,
help="WandB team. None uses default entity",
)
parser.add_argument(
"-n",
"--wandb-hostname-tag",
type=str,
nargs="*",
help="WandB tags for hostname (i.e. host_192-9-145-26)",
)
parser.add_argument(
"-c",
"--wandb-control-tag",
type=str,
nargs="+",
help="WandB tag for control commit (i.e. benchmark_5598ebc)",
)
parser.add_argument(
"-e",
"--wandb-experiment-tag",
type=str,
nargs="+",
help="WandB tag for experiment commit (i.e. benchmark_5540e1f)",
)
parser.add_argument(
"--exclude-envs",
type=str,
nargs="*",
help="Environments to exclude from comparison",
)
# parser.set_defaults(
# wandb_hostname_tag=["host_150-230-44-105", "host_155-248-214-128"],
# wandb_control_tag=["benchmark_fbc943f"],
# wandb_experiment_tag=["benchmark_f59bf74"],
# exclude_envs=[],
# )
args = parser.parse_args()
print(args)
api = wandb.Api()
all_runs = api.runs(
path=f"{args.wandb_entity or api.default_entity}/{args.wandb_project_name}",
order="+created_at",
)
runs_by_run_group: Dict[RunGroup, RunGroupRuns] = {}
wandb_hostname_tags = set(args.wandb_hostname_tag)
for r in all_runs:
if r.state != "finished":
continue
wandb_tags = set(r.config.get("wandb_tags", []))
if not wandb_tags or not wandb_hostname_tags & wandb_tags:
continue
rg = RunGroup(r.config["algo"], r.config.get("env_id") or r.config["env"])
if args.exclude_envs and rg.env_id in args.exclude_envs:
continue
if rg not in runs_by_run_group:
runs_by_run_group[rg] = RunGroupRuns(
rg,
args.wandb_control_tag,
args.wandb_experiment_tag,
)
runs_by_run_group[rg].add_run(r)
df = RunGroupRuns.data_frame(runs_by_run_group.values()).round(decimals=2)
print(f"**Total Score: {sum(df.score)}**")
df.loc["mean"] = df.mean(numeric_only=True)
print(df.to_markdown())