shafire commited on
Commit
686442a
·
verified ·
1 Parent(s): 600c33f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -3
README.md CHANGED
@@ -1,3 +1,81 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ tags:
5
+ - autotrain
6
+ - text-generation-inference
7
+ - text-generation
8
+ - peft
9
+ library_name: transformers
10
+ base_model: HuggingFaceH4/zephyr-7b-beta
11
+ widget:
12
+ - messages:
13
+ - role: user
14
+ content: What challenges do you enjoy solving?
15
+ license: apache-2.0
16
+ ---
17
+
18
+ **SpectraMind Quantum LLM** **GGUF-Compatible and Fully Optimized**
19
+
20
+ ![SpectraMind](https://huggingface.co/shafire/SpectraMindQ/resolve/main/spectramind.png)
21
+
22
+ SpectraMind is an advanced, multi-layered language model based on the Zephyr 7B architecture, built with quantum-inspired data processing techniques. Trained on custom datasets with unique quantum reasoning enhancements, SpectraMind integrates ethical decision-making frameworks with deep problem-solving capabilities, handling complex, multi-dimensional tasks with precision.
23
+
24
+ ![SpectraMind Performance](https://huggingface.co/shafire/SpectraMindQ/resolve/main/performance_chart.png)
25
+
26
+ <a href="https://www.youtube.com/watch?v=xyz123">Watch Our Model in Action</a>
27
+
28
+ **Use Cases**:
29
+ This model is ideal for advanced NLP tasks, including ethical decision-making, multi-variable reasoning, and comprehensive problem-solving in quantum and mathematical contexts.
30
+
31
+ **Key Highlights of SpectraMind:**
32
+
33
+ - **Quantum-Enhanced Reasoning**: Designed for tackling complex ethical questions and multi-layered logic problems, SpectraMind applies quantum-math techniques in AI for nuanced solutions.
34
+ - **Refined Dataset Curation**: Data was refined over multiple iterations, focusing on clarity and consistency, to align with SpectraMind's quantum-based reasoning.
35
+ - **Iterative Training**: The model underwent extensive testing phases to ensure accurate and reliable responses.
36
+ - **Optimized for CPU Inference**: Compatible with web UIs and desktop interfaces like `oobabooga` and `lm studio`, and performs well in self-hosted environments for CPU-only setups.
37
+
38
+ **Model Overview**
39
+
40
+ - **Developer**: Shafaet Brady Hussain - [ResearchForum](https://researchforum.online)
41
+ - **Funded by**: [Researchforum.online](https://researchforum.online)
42
+ - **Language**: English
43
+ - **Model Type**: Causal Language Model
44
+ - **Base Model**: Zephyr 7B Beta (HuggingFaceH4)
45
+ - **License**: Apache-2.0
46
+
47
+ **Usage**: Run on any web interface or as a bot for self-hosted solutions. Designed to run smoothly on CPU.
48
+
49
+ **Tested on CPU - Ideal for Local and Self-Hosted Environments**
50
+
51
+ AGENT INTERFACE DETAILS:
52
+ ![SpectraMind Agent Interface](https://huggingface.co/shafire/SpectraMindQ/resolve/main/interface_screenshot.png)
53
+
54
+ ---
55
+
56
+ ### Usage Code Example:
57
+
58
+ You can load and interact with SpectraMind using the following code snippet:
59
+
60
+ ```python
61
+ from transformers import AutoModelForCausalLM, AutoTokenizer
62
+
63
+ model_path = "PATH_TO_THIS_REPO"
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ model_path,
68
+ device_map="auto",
69
+ torch_dtype="auto"
70
+ ).eval()
71
+
72
+ # Example prompt
73
+ messages = [
74
+ {"role": "user", "content": "What challenges do you enjoy solving?"}
75
+ ]
76
+
77
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
78
+ output_ids = model.generate(input_ids.to("cuda"))
79
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
80
+
81
+ print(response) # Prints the model's response