File size: 15,125 Bytes
ece7633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
""" Florence-2 configuration"""
from typing import Optional
from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Florence2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
drop_path_rate (`float`, *optional*, defaults to 0.1):
The dropout rate of the drop path layer.
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
The patch size of the image.
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
The patch stride of the image.
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
The patch padding of the image.
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
Whether to apply layer normalization before the patch embedding layer.
enable_checkpoint (`bool`, *optional*, defaults to False):
Whether to enable checkpointing.
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
The dimension of the embedding layer.
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
The number of attention heads.
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
The number of groups.
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
The depth of the model.
window_size (`int`, *optional*, defaults to 12):
The window size of the model.
projection_dim (`int`, *optional*, defaults to 1024):
The dimension of the projection layer.
visual_temporal_embedding (`dict`, *optional*):
The configuration of the visual temporal embedding.
image_pos_embed (`dict`, *optional*):
The configuration of the image position embedding.
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
The source of the image feature.
Example:
```python
>>> from transformers import Florence2VisionConfig, Florence2VisionModel
>>> # Initializing a Florence2 Vision style configuration
>>> configuration = Florence2VisionConfig()
>>> # Initializing a model (with random weights)
>>> model = Florence2VisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "florence2_vision"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
drop_path_rate=0.1,
patch_size=[7, 3, 3, 3],
patch_stride=[4, 2, 2, 2],
patch_padding=[3, 1, 1, 1],
patch_prenorm=[False, True, True, True],
enable_checkpoint=False,
dim_embed=[256, 512, 1024, 2048],
num_heads=[8, 16, 32, 64],
num_groups=[8, 16, 32, 64],
depths=[1, 1, 9, 1],
window_size=12,
projection_dim=1024,
visual_temporal_embedding=None,
image_pos_embed=None,
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
**kwargs,
):
self.drop_path_rate = drop_path_rate
self.patch_size = patch_size
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.patch_prenorm = patch_prenorm
self.enable_checkpoint = enable_checkpoint
self.dim_embed = dim_embed
self.num_heads = num_heads
self.num_groups = num_groups
self.depths = depths
self.window_size = window_size
self.projection_dim = projection_dim
self.visual_temporal_embedding = visual_temporal_embedding
self.image_pos_embed = image_pos_embed
self.image_feature_source = image_feature_source
super().__init__(**kwargs)
class Florence2LanguageConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BART
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51289):
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Florence2LanguageModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_labels (`int`, *optional*, defaults to 3):
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
>>> # Initializing a Florence2 Language style configuration
>>> configuration = Florence2LanguageConfig()
>>> # Initializing a model (with random weights)
>>> model = Florence2LangaugeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "florence2_language"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=51289,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True,
num_labels=3,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=num_labels,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed."
)
class Florence2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
Florence-2 model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Florence2VisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
vocab_size (`int`, *optional*, defaults to 51289):
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
projection_dim (`int`, *optional*, defaults to 1024):
Dimension of the multimodal projection space.
Example:
```python
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
>>> # Initializing a clip-like vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Bart config
>>> text_config = BartConfig()
>>> # Initializing a Florence-2 configuration
>>> configuration = Florence2Config(vision_config, text_config)
>>> # Initializing a model from the florence-2 configuration
>>> model = Florence2ForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "florence2"
is_composition = False
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
vocab_size=51289,
projection_dim=1024,
**kwargs,
):
self.ignore_index = ignore_index
self.vocab_size = vocab_size
self.projection_dim = projection_dim
if vision_config is not None:
vision_config = PretrainedConfig(**vision_config)
self.vision_config = vision_config
self.vocab_size = self.vocab_size
self.text_config = text_config
if text_config is not None:
self.text_config = Florence2LanguageConfig(**text_config)
super().__init__(**kwargs)
|