shibing624
commited on
Commit
·
01c2dee
1
Parent(s):
59e85aa
Update README.md
Browse files
README.md
CHANGED
@@ -9,22 +9,36 @@ tags:
|
|
9 |
---
|
10 |
# shibing624/text2vec
|
11 |
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
12 |
## Usage (text2vec)
|
13 |
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
|
|
14 |
```
|
15 |
pip install -U text2vec
|
16 |
```
|
|
|
17 |
Then you can use the model like this:
|
|
|
18 |
```python
|
19 |
-
from text2vec import
|
20 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
21 |
|
22 |
-
model =
|
23 |
embeddings = model.encode(sentences)
|
24 |
print(embeddings)
|
25 |
```
|
|
|
26 |
## Usage (HuggingFace Transformers)
|
27 |
-
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
```python
|
29 |
from transformers import BertTokenizer, BertModel
|
30 |
import torch
|
@@ -50,6 +64,28 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
50 |
print("Sentence embeddings:")
|
51 |
print(sentence_embeddings)
|
52 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
## Evaluation Results
|
54 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
55 |
|
|
|
9 |
---
|
10 |
# shibing624/text2vec
|
11 |
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
## Usage (text2vec)
|
14 |
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
15 |
+
|
16 |
```
|
17 |
pip install -U text2vec
|
18 |
```
|
19 |
+
|
20 |
Then you can use the model like this:
|
21 |
+
|
22 |
```python
|
23 |
+
from text2vec import SentenceModel
|
24 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
25 |
|
26 |
+
model = SentenceModel('shibing624/text2vec-base-chinese')
|
27 |
embeddings = model.encode(sentences)
|
28 |
print(embeddings)
|
29 |
```
|
30 |
+
|
31 |
## Usage (HuggingFace Transformers)
|
32 |
+
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
33 |
+
|
34 |
+
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
35 |
+
|
36 |
+
Install transformers:
|
37 |
+
```
|
38 |
+
pip install transformers
|
39 |
+
```
|
40 |
+
|
41 |
+
Then load model and predict:
|
42 |
```python
|
43 |
from transformers import BertTokenizer, BertModel
|
44 |
import torch
|
|
|
64 |
print("Sentence embeddings:")
|
65 |
print(sentence_embeddings)
|
66 |
```
|
67 |
+
|
68 |
+
## Usage (sentence-transformers)
|
69 |
+
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
|
70 |
+
|
71 |
+
Install sentence-transformers:
|
72 |
+
```
|
73 |
+
pip install -U sentence-transformers
|
74 |
+
```
|
75 |
+
|
76 |
+
Then load model and predict:
|
77 |
+
|
78 |
+
```python
|
79 |
+
from sentence_transformers import SentenceTransformer
|
80 |
+
|
81 |
+
m = SentenceTransformer("shibing624/text2vec-base-chinese")
|
82 |
+
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
83 |
+
|
84 |
+
sentence_embeddings = m.encode(sentences)
|
85 |
+
print("Sentence embeddings:")
|
86 |
+
print(sentence_embeddings)
|
87 |
+
```
|
88 |
+
|
89 |
## Evaluation Results
|
90 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
91 |
|