shibing624
commited on
Commit
·
d6fb8b9
1
Parent(s):
53da5f4
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text2vec
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
---
|
10 |
+
# shibing624/text2vec
|
11 |
+
This is a CoSENT(Cosine Sentence) model: It maps sentences to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
## Usage (text2vec)
|
13 |
+
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
14 |
+
```
|
15 |
+
pip install -U text2vec
|
16 |
+
```
|
17 |
+
Then you can use the model like this:
|
18 |
+
```python
|
19 |
+
from text2vec import SBert
|
20 |
+
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
21 |
+
|
22 |
+
model = SBert('shibing624/text2vec-base-chinese')
|
23 |
+
embeddings = model.encode(sentences)
|
24 |
+
print(embeddings)
|
25 |
+
```
|
26 |
+
## Usage (HuggingFace Transformers)
|
27 |
+
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
28 |
+
```python
|
29 |
+
from transformers import BertTokenizer, BertModel
|
30 |
+
import torch
|
31 |
+
|
32 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
33 |
+
def mean_pooling(model_output, attention_mask):
|
34 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
35 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
36 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
37 |
+
|
38 |
+
# Load model from HuggingFace Hub
|
39 |
+
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
|
40 |
+
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')
|
41 |
+
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
42 |
+
# Tokenize sentences
|
43 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
44 |
+
|
45 |
+
# Compute token embeddings
|
46 |
+
with torch.no_grad():
|
47 |
+
model_output = model(**encoded_input)
|
48 |
+
# Perform pooling. In this case, max pooling.
|
49 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
50 |
+
print("Sentence embeddings:")
|
51 |
+
print(sentence_embeddings)
|
52 |
+
```
|
53 |
+
## Evaluation Results
|
54 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
55 |
+
|
56 |
+
## Full Model Architecture
|
57 |
+
```
|
58 |
+
SBert(
|
59 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
60 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
|
61 |
+
)
|
62 |
+
```
|
63 |
+
## Citing & Authors
|
64 |
+
This model was trained by [text2vec/cosent](https://github.com/shibing624/text2vec/cosent).
|
65 |
+
|
66 |
+
If you find this model helpful, feel free to cite:
|
67 |
+
```bibtex
|
68 |
+
@software{text2vec,
|
69 |
+
author = {Xu Ming},
|
70 |
+
title = {text2vec: A Tool for Text to Vector},
|
71 |
+
year = {2022},
|
72 |
+
url = {https://github.com/shibing624/text2vec},
|
73 |
+
}
|
74 |
+
```
|