Initial lunar agent commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -496.22 +/- 221.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c9df07d7250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c9df07d72e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c9df07d7370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c9df07d7400>", "_build": "<function ActorCriticPolicy._build at 0x7c9df07d7490>", "forward": "<function ActorCriticPolicy.forward at 0x7c9df07d7520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c9df07d75b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c9df07d7640>", "_predict": "<function ActorCriticPolicy._predict at 0x7c9df07d76d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c9df07d7760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9df07d77f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c9df07d7880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c9df10fa340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717465907532326961, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYfojxH+ao/BuOoPRJph75Hcpa9GbhLvQAAAAAAAAAAWoygvX+gsz9Pdwu/Xbd0vcouUj3mrsG8AAAAAAAAAADmX3e9hk23PzQbmL4sjKa9TZqNu2Cu070AAAAAAAAAAHOGyL6Gjq8+i0zsvvOFfL/cCKy+8j9CvgAAAAAAAAAAmlKzvd38Fj8GVIo+7pZ1v0QRCL9x+iy9AAAAAAAAAADQxZU+MhE6Pw2U4j7KXBm/Cbu7PPNWYD4AAAAAAAAAADNTADtWIBw/AnLWvZ2ndL/CYmU+jvO0PAAAAAAAAAAAwOfDvVfolT7+86A9GTl5v4TlCb5NtuY9AAAAAAAAAAAyiQO/uE5XP1PZFL/vVjm/ViYuvlklSb4AAAAAAAAAAHMg8D53KBU/XueZPgdlRb9Jdw8/WFyhPQAAAAAAAAAA8xSevdtCqj+9Hma+htOGvrhKp71nkza+AAAAAAAAAADGSe4+FQu6PqegyT3JEVG/vR7SPgCj7b0AAAAAAAAAAAAHdj2zbrs/cii3Pkf5qTxTaku9Xl6+uwAAAAAAAAAAM7aXPVCovD8ddKU+vwngvYjV4LzJ8hq8AAAAAAAAAADaS2c+JFq0P97kmz6mL82+vOK4Pi7dmz0AAAAAAAAAAO27MD5o9k0/uivYvUKDWL8gljw+NvukvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDfVZ/0/W2CMAWyUS0+MAXSUR0B0nz3IuGsWdX2UKGgGR8BfrG6PKdQPaAdLkWgIR0B0n3ZFocrBdX2UKGgGR8BU2/4ubqhUaAdLZmgIR0B0n/p+tr9EdX2UKGgGR8BQYn7gsK9gaAdLbmgIR0B0oRI1+AmRdX2UKGgGR8BlfsoYvWYnaAdLkmgIR0B0oSNvOyE+dX2UKGgGR8Bb4BJ7LMcIaAdLQ2gIR0B0ofbEgntwdX2UKGgGR8BYwZPdl/YraAdLlWgIR0B0omUUwi7kdX2UKGgGR8BKZyf16E8JaAdLZ2gIR0B0orvlU6xPdX2UKGgGR8BEcHbypaRqaAdLV2gIR0B0owSvkiljdX2UKGgGR8BoHwp2ECeVaAdLdWgIR0B0o+1w5vLpdX2UKGgGR8Bb8lWwNb1RaAdLhWgIR0B0pF4cFQl9dX2UKGgGR8BCts0P6KtQaAdLUWgIR0B0pN21UlzEdX2UKGgGR8BX0vdAPd2xaAdLYmgIR0B0pcUSIxgzdX2UKGgGR8BDxleWv8qGaAdLnmgIR0B0pfLkjopydX2UKGgGR8BYVyWE9MbnaAdLkmgIR0B0pjEtNBWxdX2UKGgGR8BXR9uLrHENaAdLfmgIR0B0pnRsuWa+dX2UKGgGR8BTXuIVM23saAdLg2gIR0B0pr3BYV7AdX2UKGgGR8AsK3nZCfHxaAdLS2gIR0B0p3d56dDqdX2UKGgGR8BSeNz8xbjcaAdLT2gIR0B0qF7eEZivdX2UKGgGR8BQAlxffGdaaAdLlGgIR0B0qRCQcPvsdX2UKGgGR8BU4tvKlpGnaAdLdmgIR0B0qQnSfDk3dX2UKGgGR8BIOSjQAuIzaAdLemgIR0B0qVt65XlsdX2UKGgGR8BWBMImgJ1JaAdLm2gIR0B0qm8J2MbWdX2UKGgGR8BGMiADq4YraAdLVGgIR0B0qrWRRuTBdX2UKGgGR8BXlG0u14PgaAdLUGgIR0B0rGEh7mdRdX2UKGgGR8BRF/Nu+AVgaAdLWWgIR0B0rPyf+S8rdX2UKGgGR8BY8wZTAFgVaAdLmWgIR0B0rbR1HOKPdX2UKGgGR8BEsxyfcvduaAdLh2gIR0B0rtc2R7qqdX2UKGgGR8BkBupn6EamaAdLamgIR0B0r4zMzMzNdX2UKGgGR8BUcws052haaAdLpGgIR0B0r9z1bqyGdX2UKGgGR8A/ej6N2ki2aAdLUGgIR0B0r9z8xbjcdX2UKGgGR8BNPwdjoZAIaAdLV2gIR0B0sWQjlgc+dX2UKGgGR8BCfPPC2tuDaAdLi2gIR0B0saSr5qM4dX2UKGgGR8Bf5Fum78NyaAdLjWgIR0B0s0Mb3oLYdX2UKGgGR8BXvGy9mHxjaAdLs2gIR0B0s5Kyv9tNdX2UKGgGR8BgKhGlQ/HHaAdLhGgIR0B0s5BMSK3vdX2UKGgGR8BYbuogmqo7aAdLUGgIR0B0tMW56MR6dX2UKGgGR8BVq7ZSNwR5aAdLamgIR0B0tQ7LdN34dX2UKGgGR8BRzv6GgzxgaAdLeWgIR0B0tT/WDpTudX2UKGgGR8BW5k9IPK+0aAdLdGgIR0B0tlTYNAkcdX2UKGgGR8BQcbyc0+C9aAdLRmgIR0B0tqQeV9ncdX2UKGgGR8A7wmdy1eByaAdLamgIR0B0turtE5QxdX2UKGgGR8BYFSL2pQ1raAdLjmgIR0B0ttzU7Sy/dX2UKGgGR8BcKtfkWAPNaAdLaGgIR0B0t7W+XZ5BdX2UKGgGR8BmumBBiTdMaAdLc2gIR0B0uoX+ERJ3dX2UKGgGR8BPXmZ/kNnXaAdLhGgIR0B0uzVc2R7rdX2UKGgGR8BNlxnnMdLhaAdLbGgIR0B0u8JRfnfVdX2UKGgGR8BW/NjgAIY4aAdLcWgIR0B0u//1g6U8dX2UKGgGR8BP3/rjYI0JaAdLimgIR0B0vHAYYR/WdX2UKGgGR8B1lh2ovSMMaAdLZ2gIR0B0vNDG96C2dX2UKGgGR8BOa0Bfa6BiaAdLTGgIR0B0vWXWvr4WdX2UKGgGR8BQTh2bG3nZaAdLUmgIR0B0vaG5+YtydX2UKGgGR8BCC3tKIznBaAdLX2gIR0B0vdHCoCMhdX2UKGgGR8BWWx6OYIBzaAdLZWgIR0B0vjpu/DcedX2UKGgGR8AowqJdjXnRaAdLT2gIR0B0vrq6e5FxdX2UKGgGR8BRLz+R5kbxaAdLfGgIR0B0vtZDArQPdX2UKGgGR8BPiukk8ifQaAdLdGgIR0B0wUnndO6/dX2UKGgGR8BVbJDZ13dLaAdLdmgIR0B0wX3AVO9GdX2UKGgGR8BJjnVf/m1ZaAdLjWgIR0B0wctDlYEGdX2UKGgGR8BkMPBYV6/qaAdLoGgIR0B0wnIDHOrydX2UKGgGR8BQnfJRwZO0aAdLTGgIR0B0wxa2WpqAdX2UKGgGR8BOwiay8jA0aAdLYmgIR0B0xFepn6EbdX2UKGgGR8Bc3sUZeiSJaAdLbGgIR0B0xKNZNfw7dX2UKGgGR8BYRuPJaJQ+aAdLQ2gIR0B0xSiItUXIdX2UKGgGR8BG9vgFX7tRaAdLVWgIR0B0xjv0AcT8dX2UKGgGR8BZNMnVoYelaAdLeWgIR0B0xxgeA/cGdX2UKGgGR8BFzQwj+rEMaAdLaWgIR0B0x3P+n62wdX2UKGgGR8AzcFZgXuVpaAdLfGgIR0B0yJNO/L1VdX2UKGgGR8BNwlsguAZsaAdLSmgIR0B0yPSBshxHdX2UKGgGR8BXf/LkjopyaAdLhGgIR0B0yPznRsuWdX2UKGgGR8BUliidrftQaAdLR2gIR0B0yfamGdqddX2UKGgGR8A9C5ftx+8XaAdLc2gIR0B0yfsWweNldX2UKGgGR8BEZWM0gr6MaAdLWWgIR0B0yjQE6kqMdX2UKGgGR8BJWvH93r2QaAdLg2gIR0B0ynkyULUkdX2UKGgGR8BS2b5ZbILgaAdLWWgIR0B0ywZuQ6p6dX2UKGgGR8BV/MXWOIZZaAdLoWgIR0B0zOa2F36idX2UKGgGR8BPntXgccU/aAdLe2gIR0B0zRQSBbwCdX2UKGgGR8BMvxAKOT7maAdLdWgIR0B0z7kdV/+bdX2UKGgGR8BRM87yQPqcaAdLcWgIR0B00Gfzz3AVdX2UKGgGR8BllFLcsUZfaAdLcmgIR0B00ZUrCm/GdX2UKGgGR8BSRu2qkuYhaAdLg2gIR0B00ZYgaFVUdX2UKGgGR8BPKVlwtJ4CaAdLXGgIR0B00hLteD3/dX2UKGgGR8BSiTNt65XmaAdLZ2gIR0B01GDh99c9dX2UKGgGR8Bd4ZeE7GNraAdLdmgIR0B01INc4YJmdX2UKGgGR8BW1Mm4RVZLaAdLcWgIR0B01SG47Rv4dX2UKGgGR8Bg/ZU96kZaaAdLVGgIR0B01Ybn5i3HdX2UKGgGR8Bqh4PXkHUuaAdLk2gIR0B01YZjx0+1dX2UKGgGR8BZ6LEP1+RYaAdLV2gIR0B01aV9nbqRdX2UKGgGR8BMyguyu6mPaAdLeWgIR0B01dlDneSCdX2UKGgGR8BPKtoSL61taAdLnmgIR0B01ohkiD/VdX2UKGgGR8BEE2zfJmulaAdLj2gIR0B01qDwpe/pdX2UKGgGR8BDltxVAAyVaAdLfWgIR0B01tTcZccEdX2UKGgGR8BRuiXhOxjbaAdLT2gIR0B02GEXcgyNdX2UKGgGR8BV5nyqdYnwaAdLnWgIR0B02GjqOcUedX2UKGgGR8BMX4u01IiDaAdLhmgIR0B02pjTa0x/dX2UKGgGR8BShO9alk6LaAdLd2gIR0B02s8+zMRpdX2UKGgGR8BX7hwIdELIaAdLgWgIR0B02qqT8pCsdX2UKGgGR8BRRhEBsANoaAdLWWgIR0B02yqHXVbzdX2UKGgGR8BOSAYpDu0DaAdLUWgIR0B020RChN/OdX2UKGgGR8BKuFZX+2mYaAdLgmgIR0B024nb7CSBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b7f17d249d57480b7a7fe5a229c8d0c148f7d2dcc7874b38acedf0ddda96c20
|
3 |
+
size 147946
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c9df07d7250>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c9df07d72e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c9df07d7370>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c9df07d7400>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c9df07d7490>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c9df07d7520>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c9df07d75b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c9df07d7640>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c9df07d76d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c9df07d7760>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9df07d77f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c9df07d7880>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c9df10fa340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 131072,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1717465907532326961,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYfojxH+ao/BuOoPRJph75Hcpa9GbhLvQAAAAAAAAAAWoygvX+gsz9Pdwu/Xbd0vcouUj3mrsG8AAAAAAAAAADmX3e9hk23PzQbmL4sjKa9TZqNu2Cu070AAAAAAAAAAHOGyL6Gjq8+i0zsvvOFfL/cCKy+8j9CvgAAAAAAAAAAmlKzvd38Fj8GVIo+7pZ1v0QRCL9x+iy9AAAAAAAAAADQxZU+MhE6Pw2U4j7KXBm/Cbu7PPNWYD4AAAAAAAAAADNTADtWIBw/AnLWvZ2ndL/CYmU+jvO0PAAAAAAAAAAAwOfDvVfolT7+86A9GTl5v4TlCb5NtuY9AAAAAAAAAAAyiQO/uE5XP1PZFL/vVjm/ViYuvlklSb4AAAAAAAAAAHMg8D53KBU/XueZPgdlRb9Jdw8/WFyhPQAAAAAAAAAA8xSevdtCqj+9Hma+htOGvrhKp71nkza+AAAAAAAAAADGSe4+FQu6PqegyT3JEVG/vR7SPgCj7b0AAAAAAAAAAAAHdj2zbrs/cii3Pkf5qTxTaku9Xl6+uwAAAAAAAAAAM7aXPVCovD8ddKU+vwngvYjV4LzJ8hq8AAAAAAAAAADaS2c+JFq0P97kmz6mL82+vOK4Pi7dmz0AAAAAAAAAAO27MD5o9k0/uivYvUKDWL8gljw+NvukvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.3107200000000001,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDfVZ/0/W2CMAWyUS0+MAXSUR0B0nz3IuGsWdX2UKGgGR8BfrG6PKdQPaAdLkWgIR0B0n3ZFocrBdX2UKGgGR8BU2/4ubqhUaAdLZmgIR0B0n/p+tr9EdX2UKGgGR8BQYn7gsK9gaAdLbmgIR0B0oRI1+AmRdX2UKGgGR8BlfsoYvWYnaAdLkmgIR0B0oSNvOyE+dX2UKGgGR8Bb4BJ7LMcIaAdLQ2gIR0B0ofbEgntwdX2UKGgGR8BYwZPdl/YraAdLlWgIR0B0omUUwi7kdX2UKGgGR8BKZyf16E8JaAdLZ2gIR0B0orvlU6xPdX2UKGgGR8BEcHbypaRqaAdLV2gIR0B0owSvkiljdX2UKGgGR8BoHwp2ECeVaAdLdWgIR0B0o+1w5vLpdX2UKGgGR8Bb8lWwNb1RaAdLhWgIR0B0pF4cFQl9dX2UKGgGR8BCts0P6KtQaAdLUWgIR0B0pN21UlzEdX2UKGgGR8BX0vdAPd2xaAdLYmgIR0B0pcUSIxgzdX2UKGgGR8BDxleWv8qGaAdLnmgIR0B0pfLkjopydX2UKGgGR8BYVyWE9MbnaAdLkmgIR0B0pjEtNBWxdX2UKGgGR8BXR9uLrHENaAdLfmgIR0B0pnRsuWa+dX2UKGgGR8BTXuIVM23saAdLg2gIR0B0pr3BYV7AdX2UKGgGR8AsK3nZCfHxaAdLS2gIR0B0p3d56dDqdX2UKGgGR8BSeNz8xbjcaAdLT2gIR0B0qF7eEZivdX2UKGgGR8BQAlxffGdaaAdLlGgIR0B0qRCQcPvsdX2UKGgGR8BU4tvKlpGnaAdLdmgIR0B0qQnSfDk3dX2UKGgGR8BIOSjQAuIzaAdLemgIR0B0qVt65XlsdX2UKGgGR8BWBMImgJ1JaAdLm2gIR0B0qm8J2MbWdX2UKGgGR8BGMiADq4YraAdLVGgIR0B0qrWRRuTBdX2UKGgGR8BXlG0u14PgaAdLUGgIR0B0rGEh7mdRdX2UKGgGR8BRF/Nu+AVgaAdLWWgIR0B0rPyf+S8rdX2UKGgGR8BY8wZTAFgVaAdLmWgIR0B0rbR1HOKPdX2UKGgGR8BEsxyfcvduaAdLh2gIR0B0rtc2R7qqdX2UKGgGR8BkBupn6EamaAdLamgIR0B0r4zMzMzNdX2UKGgGR8BUcws052haaAdLpGgIR0B0r9z1bqyGdX2UKGgGR8A/ej6N2ki2aAdLUGgIR0B0r9z8xbjcdX2UKGgGR8BNPwdjoZAIaAdLV2gIR0B0sWQjlgc+dX2UKGgGR8BCfPPC2tuDaAdLi2gIR0B0saSr5qM4dX2UKGgGR8Bf5Fum78NyaAdLjWgIR0B0s0Mb3oLYdX2UKGgGR8BXvGy9mHxjaAdLs2gIR0B0s5Kyv9tNdX2UKGgGR8BgKhGlQ/HHaAdLhGgIR0B0s5BMSK3vdX2UKGgGR8BYbuogmqo7aAdLUGgIR0B0tMW56MR6dX2UKGgGR8BVq7ZSNwR5aAdLamgIR0B0tQ7LdN34dX2UKGgGR8BRzv6GgzxgaAdLeWgIR0B0tT/WDpTudX2UKGgGR8BW5k9IPK+0aAdLdGgIR0B0tlTYNAkcdX2UKGgGR8BQcbyc0+C9aAdLRmgIR0B0tqQeV9ncdX2UKGgGR8A7wmdy1eByaAdLamgIR0B0turtE5QxdX2UKGgGR8BYFSL2pQ1raAdLjmgIR0B0ttzU7Sy/dX2UKGgGR8BcKtfkWAPNaAdLaGgIR0B0t7W+XZ5BdX2UKGgGR8BmumBBiTdMaAdLc2gIR0B0uoX+ERJ3dX2UKGgGR8BPXmZ/kNnXaAdLhGgIR0B0uzVc2R7rdX2UKGgGR8BNlxnnMdLhaAdLbGgIR0B0u8JRfnfVdX2UKGgGR8BW/NjgAIY4aAdLcWgIR0B0u//1g6U8dX2UKGgGR8BP3/rjYI0JaAdLimgIR0B0vHAYYR/WdX2UKGgGR8B1lh2ovSMMaAdLZ2gIR0B0vNDG96C2dX2UKGgGR8BOa0Bfa6BiaAdLTGgIR0B0vWXWvr4WdX2UKGgGR8BQTh2bG3nZaAdLUmgIR0B0vaG5+YtydX2UKGgGR8BCC3tKIznBaAdLX2gIR0B0vdHCoCMhdX2UKGgGR8BWWx6OYIBzaAdLZWgIR0B0vjpu/DcedX2UKGgGR8AowqJdjXnRaAdLT2gIR0B0vrq6e5FxdX2UKGgGR8BRLz+R5kbxaAdLfGgIR0B0vtZDArQPdX2UKGgGR8BPiukk8ifQaAdLdGgIR0B0wUnndO6/dX2UKGgGR8BVbJDZ13dLaAdLdmgIR0B0wX3AVO9GdX2UKGgGR8BJjnVf/m1ZaAdLjWgIR0B0wctDlYEGdX2UKGgGR8BkMPBYV6/qaAdLoGgIR0B0wnIDHOrydX2UKGgGR8BQnfJRwZO0aAdLTGgIR0B0wxa2WpqAdX2UKGgGR8BOwiay8jA0aAdLYmgIR0B0xFepn6EbdX2UKGgGR8Bc3sUZeiSJaAdLbGgIR0B0xKNZNfw7dX2UKGgGR8BYRuPJaJQ+aAdLQ2gIR0B0xSiItUXIdX2UKGgGR8BG9vgFX7tRaAdLVWgIR0B0xjv0AcT8dX2UKGgGR8BZNMnVoYelaAdLeWgIR0B0xxgeA/cGdX2UKGgGR8BFzQwj+rEMaAdLaWgIR0B0x3P+n62wdX2UKGgGR8AzcFZgXuVpaAdLfGgIR0B0yJNO/L1VdX2UKGgGR8BNwlsguAZsaAdLSmgIR0B0yPSBshxHdX2UKGgGR8BXf/LkjopyaAdLhGgIR0B0yPznRsuWdX2UKGgGR8BUliidrftQaAdLR2gIR0B0yfamGdqddX2UKGgGR8A9C5ftx+8XaAdLc2gIR0B0yfsWweNldX2UKGgGR8BEZWM0gr6MaAdLWWgIR0B0yjQE6kqMdX2UKGgGR8BJWvH93r2QaAdLg2gIR0B0ynkyULUkdX2UKGgGR8BS2b5ZbILgaAdLWWgIR0B0ywZuQ6p6dX2UKGgGR8BV/MXWOIZZaAdLoWgIR0B0zOa2F36idX2UKGgGR8BPntXgccU/aAdLe2gIR0B0zRQSBbwCdX2UKGgGR8BMvxAKOT7maAdLdWgIR0B0z7kdV/+bdX2UKGgGR8BRM87yQPqcaAdLcWgIR0B00Gfzz3AVdX2UKGgGR8BllFLcsUZfaAdLcmgIR0B00ZUrCm/GdX2UKGgGR8BSRu2qkuYhaAdLg2gIR0B00ZYgaFVUdX2UKGgGR8BPKVlwtJ4CaAdLXGgIR0B00hLteD3/dX2UKGgGR8BSiTNt65XmaAdLZ2gIR0B01GDh99c9dX2UKGgGR8Bd4ZeE7GNraAdLdmgIR0B01INc4YJmdX2UKGgGR8BW1Mm4RVZLaAdLcWgIR0B01SG47Rv4dX2UKGgGR8Bg/ZU96kZaaAdLVGgIR0B01Ybn5i3HdX2UKGgGR8Bqh4PXkHUuaAdLk2gIR0B01YZjx0+1dX2UKGgGR8BZ6LEP1+RYaAdLV2gIR0B01aV9nbqRdX2UKGgGR8BMyguyu6mPaAdLeWgIR0B01dlDneSCdX2UKGgGR8BPKtoSL61taAdLnmgIR0B01ohkiD/VdX2UKGgGR8BEE2zfJmulaAdLj2gIR0B01qDwpe/pdX2UKGgGR8BDltxVAAyVaAdLfWgIR0B01tTcZccEdX2UKGgGR8BRuiXhOxjbaAdLT2gIR0B02GEXcgyNdX2UKGgGR8BV5nyqdYnwaAdLnWgIR0B02GjqOcUedX2UKGgGR8BMX4u01IiDaAdLhmgIR0B02pjTa0x/dX2UKGgGR8BShO9alk6LaAdLd2gIR0B02s8+zMRpdX2UKGgGR8BX7hwIdELIaAdLgWgIR0B02qqT8pCsdX2UKGgGR8BRRhEBsANoaAdLWWgIR0B02yqHXVbzdX2UKGgGR8BOSAYpDu0DaAdLUWgIR0B020RChN/OdX2UKGgGR8BKuFZX+2mYaAdLgmgIR0B024nb7CSBdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 40,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3738b682bb036b6b4c08c048839080dff387ddecbc687d2ac5737b0fd5e5cfcf
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b632b5ad17b7984d84ef07d435d6e9be7f9535585ecab9a072f388f9d88f009
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (57 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -496.21622400000007, "std_reward": 221.60155993951088, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-04T01:59:59.614437"}
|