File size: 31,548 Bytes
41b0d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-base-v2
widget:
- source_sentence: For the following multiple choice question, select one correct
    answer. Let s think step by step. Question In a postoperative patient with a urinary
    diversion, the nurse should monitor the urine volume every hour. Below how many
    ml h of urine may indicate that the patient is dehydrated or has some type of
    internal obstruction or loss ? Options A. 200 ml h. B. 100 ml h. C. 80 ml h. D.
    50 ml h. E. 30 ml h.
  sentences:
  - Our approach shows that gene expression can be explained by a modest number of
    co localized transcription factors, however, information on cell type specific
    binding is crucial for understanding combinatorial gene regulation.
  - We have developed a rapid, simple, sensitive and specific method to quantify β
    antithrombin activity using 1μL of plasma. β antithrombin significantly increases
    in patients with ischemic cerebrovascular disease during the acute event, probably
    by its release from the vasculature.
  - A postoperative patient with a urinary diversion requires close monitoring of
    urine output to ensure that the diversion is functioning properly and that the
    patient is not experiencing any complications. Monitoring urine volume every hour
    is a crucial aspect of postoperative care in this scenario. To determine the correct
    answer, let s analyze each option A. 200 ml h This is a relatively high urine
    output, and it would not typically indicate dehydration or internal obstruction.
    In fact, a urine output of 200 ml h is generally considered adequate and may even
    be higher than the average urine output for a healthy adult. B. 100 ml h This
    is also a relatively high urine output and would not typically indicate dehydration
    or internal obstruction. A urine output of 100 ml h is still within the normal
    range and would not raise concerns about dehydration or obstruction. C. 80 ml
    h While this is a slightly lower urine output, it is still within the normal range
    and would not necessarily indicate dehydration or internal obstruction. D. 50
    ml h This is a lower urine output, and it may start to raise concerns about dehydration
    or internal obstruction. However, it is still not the lowest option, and the nurse
    may need to consider other factors before determining the cause of the low urine
    output. E. 30 ml h This is the lowest urine output option, and it would likely
    indicate that the patient is dehydrated or has some type of internal obstruction
    or loss. A urine output of 30 ml h is generally considered low and would require
    immediate attention from the nurse to determine the cause and take corrective
    action. Considering the options, the correct answer is E. 30 ml h. A urine output
    of 30 ml h is a critical threshold that may indicate dehydration or internal obstruction,
    and the nurse should take immediate action to assess the patient s fluid status
    and the functioning of the urinary diversion. Answer E.
- source_sentence: In tumor lysis syndrome all of the following are seen except
  sentences:
  - The results indicated that some polymorphic variations of drug metabolic and transporter
    genes may be potential biomarkers for clinical outcome of gemcitabine based therapy
    in patients with locally advanced pancreatic cancer.
  - Variations in the prevalence of depressive symptoms occurred between centres,
    not always related to levels of illness. There was no consistent relationship
    between proportions of symptoms in well persons and cases for all centres. Few
    symptoms were present in 60 of the older population stereotypes of old age were
    not upheld.
  - Tumor lysis syndrome Caused by destruction of large number of rapidly proliferating
    neoplastic cells. It frequently leads to ARF It is characterized by Hypocalcemia
    Hyperkalemia Lactic acidosis Hyperuricemia Hyperphosphatemia Most frequently associated
    with treatment of Burkitt lymphoma ALL CLL Solid tumors
- source_sentence: Does prevalence of central venous occlusion in patients with chronic
    defibrillator lead?
  sentences:
  - Intraoperative small dose IV haloperidol is effective against post operative nausea
    and vomiting with no significant effect on overall QoR. It may also attenuate
    the analgesic effects of morphine PCA.
  - Intubation is generally done with the help of endotracheal tube ETT . The internal
    diameter of ETT used ranges between 3 and 8 mm depending on the age, sex, and
    size of nares of the patient. Potex north and south polar performed Rae tubes
    RAE right angled ETT and flexo metallic tubes are commonly used. Out of them,
    North Pole Rae tube is preferred in case of ankylosis patient due to the direction
    of the curve of ETT which favors its placement in restricted mouth opening as
    in case of ankylosis.
  - The low prevalence of subclavian vein occlusion or severe stenosis among defibrillator
    recipients found in this study suggests that the placement of additional transvenous
    leads in a patient who already has a ventricular defibrillator is feasible in
    a high percentage of patients 93 .
- source_sentence: Is mode of presentation of B3 breast core biopsies screen detected
    or symptomatic a distinguishing factor in the final histopathologic result or
    risk of diagnosis of malignancy?
  sentences:
  - This observation may indicate a considerable difference in cardiovascular risk
    between genotype groups as a result of an increase in FVIIa after a fat rich diet.
  - Mode of patient presentation with a screen detected or symptomatic lesion was
    not a distinguishing factor for breast histopathologic subclassification or for
    the final cancer diagnosis in patients whose breast core biopsy was classified
    as B3.
  - Ans. is a i.e., Apaf 1o One of these proteins is cytochrome c, well known for
    its role in mitochondrial respiration. In the cytosol, cytochrome C binds to a
    protein called Apaf 1 apoptosis activating factor 1 , and the complex activates
    caspase 9. Bc1 2 and Bcl x may also directly inhibit Apaf 1 activation, and their
    loss from cells may permit activation of Apaf 1 .
- source_sentence: Is the Danish National Hospital Register a valuable study base
    for epidemiologic research in febrile seizures?
  sentences:
  - Interstitial cystitis IC is a condition that causes discomfort or pain in the
    bladder and a need to urinate frequently and urgently. It is far more common in
    women than in men. The symptoms vary from person to person. Some people may have
    pain without urgency or frequency. Others have urgency and frequency without pain.
    Women s symptoms often get worse during their periods. They may also have pain
    with sexual intercourse. The cause of IC isn t known. There is no one test to
    tell if you have it. Doctors often run tests to rule out other possible causes
    of symptoms. There is no cure for IC, but treatments can help most people feel
    better. They include Distending, or inflating, the bladder Bathing the inside
    of the bladder with a drug solution Oral medicines Electrical nerve stimulation
    Physical therapy Lifestyle changes Bladder training In rare cases, surgery NIH
    National Institute of Diabetes and Digestive and Kidney Diseases
  - Ans. is c i.e., Presence of depression Good prognostic factors Acute onset late
    onset onset after 35 years of age Presence of precipitating stressor Good premorbid
    adjustment catatonic best prognosis Paranoid 2nd best sho duration 6 months Married
    Positive symptoms Presence of depression family history of mood disorder first
    episode pyknic fat physique female sex good treatment compliance good response
    to treatment good social suppo presence of confusion or perplexity normal brain
    CT Scan outpatient treatment.
  - The Danish National Hospital Register is a valuable tool for epidemiologic research
    in febrile seizures.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: MPNet base trained on AllNLI triplets
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: eval dataset
      type: eval-dataset
    metrics:
    - type: cosine_accuracy
      value: 1.0
      name: Cosine Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: test dataset
      type: test-dataset
    metrics:
    - type: cosine_accuracy
      value: 0.97
      name: Cosine Accuracy
---

# MPNet base trained on AllNLI triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision 1c644c92ad3ba1efdad3f1451a637716616a20e8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Is the Danish National Hospital Register a valuable study base for epidemiologic research in febrile seizures?',
    'The Danish National Hospital Register is a valuable tool for epidemiologic research in febrile seizures.',
    'Ans. is c i.e., Presence of depression Good prognostic factors Acute onset late onset onset after 35 years of age Presence of precipitating stressor Good premorbid adjustment catatonic best prognosis Paranoid 2nd best sho duration 6 months Married Positive symptoms Presence of depression family history of mood disorder first episode pyknic fat physique female sex good treatment compliance good response to treatment good social suppo presence of confusion or perplexity normal brain CT Scan outpatient treatment.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Datasets: `eval-dataset` and `test-dataset`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | eval-dataset | test-dataset |
|:--------------------|:-------------|:-------------|
| **cosine_accuracy** | **1.0**      | **0.97**     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 800 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 800 samples:
  |         | sentence1                                                                          | sentence2                                                                          | label                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                         |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.88 tokens</li><li>max: 205 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 81.77 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                           | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | label            |
  |:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Triad of biotin deficiency is</code>                                                                                          | <code>Dermatitis, glossitis, Alopecia 407 H 314 Basic pathology 8th Biotin deficiency clinical features Adult Mental changes depression, hallucination , paresthesia, anorexia, nausea, A scaling, seborrheic and erythematous rash may occur around the eye, nose, mouth, as well as extremities 407 H Infant hypotonia, lethargy, apathy, alopecia and a characteristic rash that includes the ears.Symptoms of biotin deficiency includes Anaemia, loss of apepite dermatitis, glossitis 150 U. Satyanarayan Symptoms of biotin deficiency Dermatitis spectacle eyed appearance due to circumocular alopecia, pallor of skin membrane, depression, Lassitude, somnolence, anemia and hypercholesterolaemia 173 Rana Shinde 6th</code> | <code>1.0</code> |
  | <code>Drug responsible for the below condition</code>                                                                               | <code>Thalidomide given to pregnant lady can lead to hypoplasia of limbs called as Phocomelia .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>1.0</code> |
  | <code>Is benefit from procarbazine , lomustine , and vincristine in oligodendroglial tumors associated with mutation of IDH?</code> | <code>IDH mutational status identified patients with oligodendroglial tumors who did and did not benefit from alkylating agent chemotherapy with RT. Although patients with codeleted tumors lived longest, patients with noncodeleted IDH mutated tumors also lived longer after CRT.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>1.0</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 100 evaluation samples
* Columns: <code>question</code>, <code>answer</code>, and <code>hard_negative</code>
* Approximate statistics based on the first 100 samples:
  |         | question                                                                           | answer                                                                              | hard_negative      |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------|
  | type    | string                                                                             | string                                                                              | NoneType           |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.52 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 83.51 tokens</li><li>max: 403 tokens</li></ul> | <ul><li></li></ul> |
* Samples:
  | question                                                                                             | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hard_negative     |
  |:-----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Hutchinsons secondaries In skull are due to tumors in</code>                                   | <code>Adrenal neuroblastomas are malig8nant neoplasms arising from sympathetic neuroblsts in Medulla of adrenal gland Neuroblastoma is a cancer that develops from immature nerve cells found in several areas of the body.Neuroblastoma most commonly arises in and around the adrenalglands, which have similar origins to nerve cells and sit atop the kidneys.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>None</code> |
  | <code>Proliferative glomerular deposits in the kidney are found in</code>                            | <code>IgA nephropathy or Berger s disease immune complex mediated glomerulonephritis defined by the presence of diffuse mesangial IgA deposits often associated with mesangial hypercellularity. Male preponderance, peak incidence in the second and third decades of life.Clinical and laboratory findings Two most common presentations recurrent episodes of macroscopic hematuria during or immediately following an upper respiratory infection often accompanied by proteinuria or persistent asymptomatic microscopic hematuriaIgA deposited in the mesangium is typically polymeric and of the IgA1 subclass. IgM, IgG, C3, or immunoglobulin light chains may be codistributed with IgAPresence of elevated serum IgA levels in 20 50 of patients, IgA deposition in skin biopsies in 15 55 of patients, elevated levels of secretory IgA and IgA fibronectin complexesIgA nephropathy is a benign disease mostly, 5 30 of patients go into a complete remission, with others having hematuria but well preserved renal functionAbou...</code> | <code>None</code> |
  | <code>Does meconium aspiration induce oxidative injury in the hippocampus of newborn piglets?</code> | <code>Our data thus suggest that oxidative injury associated with pulmonary, but not systemic, hemodynamic disturbances may contribute to hippocampal damage after meconium aspiration in newborns.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>None</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `do_predict`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: True
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | eval-dataset_cosine_accuracy | test-dataset_cosine_accuracy |
|:-----:|:----:|:----------------------------:|:----------------------------:|
| 0     | 0    | 1.0                          | -                            |
| 1.0   | 25   | -                            | 0.97                         |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->