File size: 31,548 Bytes
41b0d7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MultipleNegativesRankingLoss
base_model: intfloat/e5-base-v2
widget:
- source_sentence: For the following multiple choice question, select one correct
answer. Let s think step by step. Question In a postoperative patient with a urinary
diversion, the nurse should monitor the urine volume every hour. Below how many
ml h of urine may indicate that the patient is dehydrated or has some type of
internal obstruction or loss ? Options A. 200 ml h. B. 100 ml h. C. 80 ml h. D.
50 ml h. E. 30 ml h.
sentences:
- Our approach shows that gene expression can be explained by a modest number of
co localized transcription factors, however, information on cell type specific
binding is crucial for understanding combinatorial gene regulation.
- We have developed a rapid, simple, sensitive and specific method to quantify β
antithrombin activity using 1μL of plasma. β antithrombin significantly increases
in patients with ischemic cerebrovascular disease during the acute event, probably
by its release from the vasculature.
- A postoperative patient with a urinary diversion requires close monitoring of
urine output to ensure that the diversion is functioning properly and that the
patient is not experiencing any complications. Monitoring urine volume every hour
is a crucial aspect of postoperative care in this scenario. To determine the correct
answer, let s analyze each option A. 200 ml h This is a relatively high urine
output, and it would not typically indicate dehydration or internal obstruction.
In fact, a urine output of 200 ml h is generally considered adequate and may even
be higher than the average urine output for a healthy adult. B. 100 ml h This
is also a relatively high urine output and would not typically indicate dehydration
or internal obstruction. A urine output of 100 ml h is still within the normal
range and would not raise concerns about dehydration or obstruction. C. 80 ml
h While this is a slightly lower urine output, it is still within the normal range
and would not necessarily indicate dehydration or internal obstruction. D. 50
ml h This is a lower urine output, and it may start to raise concerns about dehydration
or internal obstruction. However, it is still not the lowest option, and the nurse
may need to consider other factors before determining the cause of the low urine
output. E. 30 ml h This is the lowest urine output option, and it would likely
indicate that the patient is dehydrated or has some type of internal obstruction
or loss. A urine output of 30 ml h is generally considered low and would require
immediate attention from the nurse to determine the cause and take corrective
action. Considering the options, the correct answer is E. 30 ml h. A urine output
of 30 ml h is a critical threshold that may indicate dehydration or internal obstruction,
and the nurse should take immediate action to assess the patient s fluid status
and the functioning of the urinary diversion. Answer E.
- source_sentence: In tumor lysis syndrome all of the following are seen except
sentences:
- The results indicated that some polymorphic variations of drug metabolic and transporter
genes may be potential biomarkers for clinical outcome of gemcitabine based therapy
in patients with locally advanced pancreatic cancer.
- Variations in the prevalence of depressive symptoms occurred between centres,
not always related to levels of illness. There was no consistent relationship
between proportions of symptoms in well persons and cases for all centres. Few
symptoms were present in 60 of the older population stereotypes of old age were
not upheld.
- Tumor lysis syndrome Caused by destruction of large number of rapidly proliferating
neoplastic cells. It frequently leads to ARF It is characterized by Hypocalcemia
Hyperkalemia Lactic acidosis Hyperuricemia Hyperphosphatemia Most frequently associated
with treatment of Burkitt lymphoma ALL CLL Solid tumors
- source_sentence: Does prevalence of central venous occlusion in patients with chronic
defibrillator lead?
sentences:
- Intraoperative small dose IV haloperidol is effective against post operative nausea
and vomiting with no significant effect on overall QoR. It may also attenuate
the analgesic effects of morphine PCA.
- Intubation is generally done with the help of endotracheal tube ETT . The internal
diameter of ETT used ranges between 3 and 8 mm depending on the age, sex, and
size of nares of the patient. Potex north and south polar performed Rae tubes
RAE right angled ETT and flexo metallic tubes are commonly used. Out of them,
North Pole Rae tube is preferred in case of ankylosis patient due to the direction
of the curve of ETT which favors its placement in restricted mouth opening as
in case of ankylosis.
- The low prevalence of subclavian vein occlusion or severe stenosis among defibrillator
recipients found in this study suggests that the placement of additional transvenous
leads in a patient who already has a ventricular defibrillator is feasible in
a high percentage of patients 93 .
- source_sentence: Is mode of presentation of B3 breast core biopsies screen detected
or symptomatic a distinguishing factor in the final histopathologic result or
risk of diagnosis of malignancy?
sentences:
- This observation may indicate a considerable difference in cardiovascular risk
between genotype groups as a result of an increase in FVIIa after a fat rich diet.
- Mode of patient presentation with a screen detected or symptomatic lesion was
not a distinguishing factor for breast histopathologic subclassification or for
the final cancer diagnosis in patients whose breast core biopsy was classified
as B3.
- Ans. is a i.e., Apaf 1o One of these proteins is cytochrome c, well known for
its role in mitochondrial respiration. In the cytosol, cytochrome C binds to a
protein called Apaf 1 apoptosis activating factor 1 , and the complex activates
caspase 9. Bc1 2 and Bcl x may also directly inhibit Apaf 1 activation, and their
loss from cells may permit activation of Apaf 1 .
- source_sentence: Is the Danish National Hospital Register a valuable study base
for epidemiologic research in febrile seizures?
sentences:
- Interstitial cystitis IC is a condition that causes discomfort or pain in the
bladder and a need to urinate frequently and urgently. It is far more common in
women than in men. The symptoms vary from person to person. Some people may have
pain without urgency or frequency. Others have urgency and frequency without pain.
Women s symptoms often get worse during their periods. They may also have pain
with sexual intercourse. The cause of IC isn t known. There is no one test to
tell if you have it. Doctors often run tests to rule out other possible causes
of symptoms. There is no cure for IC, but treatments can help most people feel
better. They include Distending, or inflating, the bladder Bathing the inside
of the bladder with a drug solution Oral medicines Electrical nerve stimulation
Physical therapy Lifestyle changes Bladder training In rare cases, surgery NIH
National Institute of Diabetes and Digestive and Kidney Diseases
- Ans. is c i.e., Presence of depression Good prognostic factors Acute onset late
onset onset after 35 years of age Presence of precipitating stressor Good premorbid
adjustment catatonic best prognosis Paranoid 2nd best sho duration 6 months Married
Positive symptoms Presence of depression family history of mood disorder first
episode pyknic fat physique female sex good treatment compliance good response
to treatment good social suppo presence of confusion or perplexity normal brain
CT Scan outpatient treatment.
- The Danish National Hospital Register is a valuable tool for epidemiologic research
in febrile seizures.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: eval dataset
type: eval-dataset
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: test dataset
type: test-dataset
metrics:
- type: cosine_accuracy
value: 0.97
name: Cosine Accuracy
---
# MPNet base trained on AllNLI triplets
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision 1c644c92ad3ba1efdad3f1451a637716616a20e8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Is the Danish National Hospital Register a valuable study base for epidemiologic research in febrile seizures?',
'The Danish National Hospital Register is a valuable tool for epidemiologic research in febrile seizures.',
'Ans. is c i.e., Presence of depression Good prognostic factors Acute onset late onset onset after 35 years of age Presence of precipitating stressor Good premorbid adjustment catatonic best prognosis Paranoid 2nd best sho duration 6 months Married Positive symptoms Presence of depression family history of mood disorder first episode pyknic fat physique female sex good treatment compliance good response to treatment good social suppo presence of confusion or perplexity normal brain CT Scan outpatient treatment.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Datasets: `eval-dataset` and `test-dataset`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | eval-dataset | test-dataset |
|:--------------------|:-------------|:-------------|
| **cosine_accuracy** | **1.0** | **0.97** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 800 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 800 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 22.88 tokens</li><li>max: 205 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 81.77 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>Triad of biotin deficiency is</code> | <code>Dermatitis, glossitis, Alopecia 407 H 314 Basic pathology 8th Biotin deficiency clinical features Adult Mental changes depression, hallucination , paresthesia, anorexia, nausea, A scaling, seborrheic and erythematous rash may occur around the eye, nose, mouth, as well as extremities 407 H Infant hypotonia, lethargy, apathy, alopecia and a characteristic rash that includes the ears.Symptoms of biotin deficiency includes Anaemia, loss of apepite dermatitis, glossitis 150 U. Satyanarayan Symptoms of biotin deficiency Dermatitis spectacle eyed appearance due to circumocular alopecia, pallor of skin membrane, depression, Lassitude, somnolence, anemia and hypercholesterolaemia 173 Rana Shinde 6th</code> | <code>1.0</code> |
| <code>Drug responsible for the below condition</code> | <code>Thalidomide given to pregnant lady can lead to hypoplasia of limbs called as Phocomelia .</code> | <code>1.0</code> |
| <code>Is benefit from procarbazine , lomustine , and vincristine in oligodendroglial tumors associated with mutation of IDH?</code> | <code>IDH mutational status identified patients with oligodendroglial tumors who did and did not benefit from alkylating agent chemotherapy with RT. Although patients with codeleted tumors lived longest, patients with noncodeleted IDH mutated tumors also lived longer after CRT.</code> | <code>1.0</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 100 evaluation samples
* Columns: <code>question</code>, <code>answer</code>, and <code>hard_negative</code>
* Approximate statistics based on the first 100 samples:
| | question | answer | hard_negative |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------|
| type | string | string | NoneType |
| details | <ul><li>min: 5 tokens</li><li>mean: 22.52 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 83.51 tokens</li><li>max: 403 tokens</li></ul> | <ul><li></li></ul> |
* Samples:
| question | answer | hard_negative |
|:-----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
| <code>Hutchinsons secondaries In skull are due to tumors in</code> | <code>Adrenal neuroblastomas are malig8nant neoplasms arising from sympathetic neuroblsts in Medulla of adrenal gland Neuroblastoma is a cancer that develops from immature nerve cells found in several areas of the body.Neuroblastoma most commonly arises in and around the adrenalglands, which have similar origins to nerve cells and sit atop the kidneys.</code> | <code>None</code> |
| <code>Proliferative glomerular deposits in the kidney are found in</code> | <code>IgA nephropathy or Berger s disease immune complex mediated glomerulonephritis defined by the presence of diffuse mesangial IgA deposits often associated with mesangial hypercellularity. Male preponderance, peak incidence in the second and third decades of life.Clinical and laboratory findings Two most common presentations recurrent episodes of macroscopic hematuria during or immediately following an upper respiratory infection often accompanied by proteinuria or persistent asymptomatic microscopic hematuriaIgA deposited in the mesangium is typically polymeric and of the IgA1 subclass. IgM, IgG, C3, or immunoglobulin light chains may be codistributed with IgAPresence of elevated serum IgA levels in 20 50 of patients, IgA deposition in skin biopsies in 15 55 of patients, elevated levels of secretory IgA and IgA fibronectin complexesIgA nephropathy is a benign disease mostly, 5 30 of patients go into a complete remission, with others having hematuria but well preserved renal functionAbou...</code> | <code>None</code> |
| <code>Does meconium aspiration induce oxidative injury in the hippocampus of newborn piglets?</code> | <code>Our data thus suggest that oxidative injury associated with pulmonary, but not systemic, hemodynamic disturbances may contribute to hippocampal damage after meconium aspiration in newborns.</code> | <code>None</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `do_predict`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: True
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | eval-dataset_cosine_accuracy | test-dataset_cosine_accuracy |
|:-----:|:----:|:----------------------------:|:----------------------------:|
| 0 | 0 | 1.0 | - |
| 1.0 | 25 | - | 0.97 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |