Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 181.33 +/- 55.31
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc088041200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc088041290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc088041320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc0880413b0>", "_build": "<function ActorCriticPolicy._build at 0x7fc088041440>", "forward": "<function ActorCriticPolicy.forward at 0x7fc0880414d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc088041560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc0880415f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc088041680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc088041710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc0880417a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc0880942a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652229707.8240993, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBkVj4SCOY8efoUO51F0Dms5YA+6BlkugAAgD8AAIA/jaqCPexrxDo46Bq6nD/rvOO6jjwm7yI9AAAAAAAAAAAa7t694eLDOdaw0TycEp0711MxOoZXz7wAAAAAAAAAAECUHT4F09C77gHpN+IRwregmDK9ozYTtwAAgD8AAIA/TSdqvSngDLpyWHS70MeWOCwL77kTVgw5AACAPwAAgD/NqsW+WedJP36CTz5WMi6+W7LzPPPF8TwAAAAAAAAAAJpalz3CbW4+9lQYPinYnL6H7wG+5ZVqPgAAAAAAAAAAAMDJuY9Gabpwlse4cRFQNuwTs7o6yOM3AACAPwAAgD/NUBC81+NSuXBW5DwUgJU5LUeHu1pLmjgAAIA/AACAP6bfpz2IM6k/RzqOPoS+0b6EyEE9pnjYPAAAAAAAAAAAc/mTPRTGg7rgjsO7sejGNdJY6zrYTDO1AACAPwAAgD8z7KK9VZ5FP3Fqpj1EBTi+RPMOvRLogLsAAAAAAAAAAPpsFb77mL47MxWaO8/63rlvWWO9mwXMOgAAgD8AAIA/M+Q0PUhh2rgzzgy8223WNpma/rrGrUW2AACAPwAAgD9mIjK94ZTmujo9FDtDKSQ8Py73O505E70AAIA/AACAP5OpFD4u/tI7jOKFOryWHTjAv3I9Qi61uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIxCv6xd8YUCUhpRSlIwBbJRN6AOMAXSUR0CE2pyGzru6dX2UKGgGaAloD0MI527XS1MbV0CUhpRSlGgVTegDaBZHQITf2qkuYhN1fZQoaAZoCWgPQwhWRbjJqD1dQJSGlFKUaBVN6ANoFkdAhPZ6pgkTpXV9lChoBmgJaA9DCL2pSIWxVSNAlIaUUpRoFUvLaBZHQIT2pz5oGpx1fZQoaAZoCWgPQwj61RwgmPsuQJSGlFKUaBVL52gWR0CFA0Z2IO6NdX2UKGgGaAloD0MIsoUgByVrWECUhpRSlGgVTegDaBZHQIU8F8NQTEl1fZQoaAZoCWgPQwgX1SKiGL5gQJSGlFKUaBVN6ANoFkdAhT+ZQP7N0XV9lChoBmgJaA9DCLGoiNNJRhVAlIaUUpRoFU3vAWgWR0CFR9UNKAavdX2UKGgGaAloD0MIYjB/hcwMXkCUhpRSlGgVTegDaBZHQIVPHwLE1l51fZQoaAZoCWgPQwgeUDblCr1iQJSGlFKUaBVN6ANoFkdAhU+3e3x4IXV9lChoBmgJaA9DCJYkz/V9SF1AlIaUUpRoFU3oA2gWR0CFWcmQ8wHrdX2UKGgGaAloD0MIzo5U3/kXYkCUhpRSlGgVTegDaBZHQIVh1hNM4951fZQoaAZoCWgPQwikObLyy6BgQJSGlFKUaBVN6ANoFkdAhWItzjm0V3V9lChoBmgJaA9DCO1HisiwFFZAlIaUUpRoFU3oA2gWR0CFbhvcafjCdX2UKGgGaAloD0MIrFPle0ZKX0CUhpRSlGgVTegDaBZHQIV5be40/GF1fZQoaAZoCWgPQwj0bFZ9rv4vQJSGlFKUaBVL2GgWR0CFggN70Fr3dX2UKGgGaAloD0MIc/bOaKvMXUCUhpRSlGgVTegDaBZHQIWQO+Cbtqp1fZQoaAZoCWgPQwjEQq1p3vlhQJSGlFKUaBVN6ANoFkdAhZxzBInSfHV9lChoBmgJaA9DCH4YITzamCJAlIaUUpRoFUvraBZHQIWdXl0YCQt1fZQoaAZoCWgPQwg7GLFPANUxQJSGlFKUaBVL2GgWR0CFo229+PRzdX2UKGgGaAloD0MIURISaRt7N0CUhpRSlGgVTegDaBZHQIWn4TPBzmx1fZQoaAZoCWgPQwi2SrA4nDFBQJSGlFKUaBVLuGgWR0CFuTw3o9s8dX2UKGgGaAloD0MIUyP0M/VmXECUhpRSlGgVTegDaBZHQIXFSY1He8B1fZQoaAZoCWgPQwhhb2JITi9cQJSGlFKUaBVN6ANoFkdAhcV8wpON53V9lChoBmgJaA9DCFd72AsFLVhAlIaUUpRoFU3oA2gWR0CF0O/k/8l5dX2UKGgGaAloD0MIPQ0YJP1bYkCUhpRSlGgVTegDaBZHQIXTjI/7iyZ1fZQoaAZoCWgPQwjay7bT1oRdQJSGlFKUaBVN6ANoFkdAhgwN4zJp4HV9lChoBmgJaA9DCCQnE7cKgWBAlIaUUpRoFU3oA2gWR0CGE0szVMEidX2UKGgGaAloD0MI0cyTawqSRkCUhpRSlGgVS9BoFkdAhhfmsV+I/XV9lChoBmgJaA9DCAJJ2LcTFGNAlIaUUpRoFU3oA2gWR0CGGY+tbLU1dX2UKGgGaAloD0MI2GMipdmbYECUhpRSlGgVTegDaBZHQIYaEpy6tkp1fZQoaAZoCWgPQwiZSdQLPh5WQJSGlFKUaBVN6ANoFkdAhiJsl1KXfXV9lChoBmgJaA9DCB07qMT15WJAlIaUUpRoFU3oA2gWR0CGKSJ7b+LndX2UKGgGaAloD0MIDFacai2MC8CUhpRSlGgVS/NoFkdAhirDNhVlw3V9lChoBmgJaA9DCERMiSR6+FZAlIaUUpRoFU3oA2gWR0CGM40AtFrmdX2UKGgGaAloD0MISS9q96v4KUCUhpRSlGgVS+9oFkdAhjdCMglniHV9lChoBmgJaA9DCKsINxlVskVAlIaUUpRoFUu5aBZHQIZRQ4yXUpd1fZQoaAZoCWgPQwht5SX/kyFgQJSGlFKUaBVN6ANoFkdAhlKm+Cbtq3V9lChoBmgJaA9DCHXpX5LKvkxAlIaUUpRoFU3oA2gWR0CGXoLJCBwudX2UKGgGaAloD0MIO44fKg08YECUhpRSlGgVTegDaBZHQIZlRvgm7at1fZQoaAZoCWgPQwjsppTXSsleQJSGlFKUaBVN6ANoFkdAhmlHpKSPl3V9lChoBmgJaA9DCAn6Cz1iXF1AlIaUUpRoFU3oA2gWR0CGed0oScsldX2UKGgGaAloD0MIz02bcRpiYkCUhpRSlGgVTegDaBZHQIaFQuZkTYd1fZQoaAZoCWgPQwhOtoE7UIMzQJSGlFKUaBVNAQFoFkdAhosMeGO+7HV9lChoBmgJaA9DCEUOETenzF5AlIaUUpRoFU3oA2gWR0CGkOhA4XGfdX2UKGgGaAloD0MIOKEQAQdrYkCUhpRSlGgVTegDaBZHQIaTjlA/s3R1fZQoaAZoCWgPQwiqu7ILBs9cQJSGlFKUaBVN6ANoFkdAhtPngHeJpHV9lChoBmgJaA9DCJ32lJyTVWZAlIaUUpRoFU3oA2gWR0CG2L9uP3i8dX2UKGgGaAloD0MIyt5SzheWWECUhpRSlGgVTegDaBZHQIbaZa/yoXN1fZQoaAZoCWgPQwhxyAbSRf9iQJSGlFKUaBVN6ANoFkdAhuQQ3xWkrXV9lChoBmgJaA9DCPdWJCaodmNAlIaUUpRoFU3oA2gWR0CG6zKkEcKgdX2UKGgGaAloD0MImfT3Ung2YUCUhpRSlGgVTegDaBZHQIbtEbrC3w11fZQoaAZoCWgPQwhSJjW0AbxBwJSGlFKUaBVL7WgWR0CG85aoMrmRdX2UKGgGaAloD0MIpwTEJFzCXUCUhpRSlGgVTegDaBZHQIb2yy6cy311fZQoaAZoCWgPQwgxJCcTt9Y4QJSGlFKUaBVL+mgWR0CG+cYkVvdedX2UKGgGaAloD0MIWTDxR1GcYUCUhpRSlGgVTegDaBZHQIcTZzzVc2R1fZQoaAZoCWgPQwhbCd0l8T9hQJSGlFKUaBVN6ANoFkdAhxS3ko4MnnV9lChoBmgJaA9DCIeKcf6mqGFAlIaUUpRoFU3oA2gWR0CHH7lOoHcDdX2UKGgGaAloD0MIbqetEcGIU0CUhpRSlGgVTegDaBZHQIcqLJEH+qB1fZQoaAZoCWgPQwhw0F59vMJjQJSGlFKUaBVN6ANoFkdAhzmV/2Cd0HV9lChoBmgJaA9DCLA4nPnVMF1AlIaUUpRoFU3oA2gWR0CHQ/gtOEdvdX2UKGgGaAloD0MIZk8Cm3OWW0CUhpRSlGgVTegDaBZHQIdJbWsijcp1fZQoaAZoCWgPQwgmxccn5A1iQJSGlFKUaBVN6ANoFkdAh06X8GcFyXV9lChoBmgJaA9DCCRgdHlz+FxAlIaUUpRoFU3oA2gWR0CHUQ1l5GBndX2UKGgGaAloD0MIHH433bLlZUCUhpRSlGgVTegDaBZHQIeWNENOM2p1fZQoaAZoCWgPQwj5g4Hn3hMVQJSGlFKUaBVL82gWR0CHmU1rIo3KdX2UKGgGaAloD0MInL8JhYiPZECUhpRSlGgVTegDaBZHQIegT26ClJp1fZQoaAZoCWgPQwiJJlDEItxjQJSGlFKUaBVN6ANoFkdAh6fdCmdiD3V9lChoBmgJaA9DCGqlEMglDWJAlIaUUpRoFU3oA2gWR0CHqckRBeHBdX2UKGgGaAloD0MIYCNJEK5CYkCUhpRSlGgVTegDaBZHQIewL2exwAF1fZQoaAZoCWgPQwgFo5I6AZ1fQJSGlFKUaBVN6ANoFkdAh7MP9kz413V9lChoBmgJaA9DCNhHp6788GZAlIaUUpRoFU3oA2gWR0CHtjgwXZXddX2UKGgGaAloD0MIz4b8M4OALUCUhpRSlGgVS/xoFkdAh8sWpZOi4HV9lChoBmgJaA9DCJUPQdVoC2JAlIaUUpRoFU3oA2gWR0CH0DpUxVQzdX2UKGgGaAloD0MIsRh1rT0BYECUhpRSlGgVTegDaBZHQIfRhYNiH7B1fZQoaAZoCWgPQwimYfiImDBlQJSGlFKUaBVNyQNoFkdAh9gQD/2kBXV9lChoBmgJaA9DCBNlbynnulhAlIaUUpRoFU3oA2gWR0CH53KqXF98dX2UKGgGaAloD0MInWUWodiOUECUhpRSlGgVS/FoFkdAh/Srzf779HV9lChoBmgJaA9DCOhsAaH1GmFAlIaUUpRoFU3oA2gWR0CH+Sa2nbZfdX2UKGgGaAloD0MIc7uX+2QoYkCUhpRSlGgVTegDaBZHQIgLCbYsd1d1fZQoaAZoCWgPQwjDSC9q95dhQJSGlFKUaBVN6ANoFkdAiBFBllK9PHV9lChoBmgJaA9DCExr09hec2JAlIaUUpRoFU3oA2gWR0CIE/fTCtRvdX2UKGgGaAloD0MIuhXCaixzYUCUhpRSlGgVTegDaBZHQIhaj0OEug91fZQoaAZoCWgPQwjchHtlXoFiQJSGlFKUaBVN6ANoFkdAiF4CSaEzwnV9lChoBmgJaA9DCL4UHjQ7t2BAlIaUUpRoFU3oA2gWR0CIZZqrR0EHdX2UKGgGaAloD0MIYjB/hUyCYECUhpRSlGgVTegDaBZHQIhtjd+G47R1fZQoaAZoCWgPQwiOklfnmAlgQJSGlFKUaBVN6ANoFkdAiHa0cfeUIXV9lChoBmgJaA9DCH9ne/SGIF5AlIaUUpRoFU3oA2gWR0CIehC6Ymb9dX2UKGgGaAloD0MI3NYWnhcoYUCUhpRSlGgVTegDaBZHQIh9YfGMn7Z1fZQoaAZoCWgPQwhYyjLEsdRhQJSGlFKUaBVN6ANoFkdAiJP8AzYVZnV9lChoBmgJaA9DCIp3gCct7BfAlIaUUpRoFUu4aBZHQIiUeAwwj+t1fZQoaAZoCWgPQwho7Es2nrZgQJSGlFKUaBVN6ANoFkdAiJlTZ6D5CXV9lChoBmgJaA9DCO0L6IU76WJAlIaUUpRoFU3oA2gWR0CIoemReTmodX2UKGgGaAloD0MICFdAoR75Y0CUhpRSlGgVTegDaBZHQIixxVjqfOF1fZQoaAZoCWgPQwhRai+i7XBlQJSGlFKUaBVN6ANoFkdAiL/IPK+zt3V9lChoBmgJaA9DCIaTNH9MS2BAlIaUUpRoFU3oA2gWR0CIxERB/qgRdX2UKGgGaAloD0MIBcB4Bg33XkCUhpRSlGgVTegDaBZHQIjWzpTuOS51fZQoaAZoCWgPQwhy+Q/pN1NkQJSGlFKUaBVN6ANoFkdAiN1RmTTvzHV9lChoBmgJaA9DCKgZUkXxYWFAlIaUUpRoFU3oA2gWR0CI4FFfiPyTdX2UKGgGaAloD0MItRX7y+4ZIMCUhpRSlGgVS/poFkdAiOy2HDaXbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b289b7a8a915cc0b88847931b4679bdf7b8e6288e7e7d1e416cbe463cbee55d8
|
3 |
+
size 144028
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc088041200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc088041290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc088041320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc0880413b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc088041440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc0880414d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc088041560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc0880415f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc088041680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc088041710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc0880417a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc0880942a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652229707.8240993,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBkVj4SCOY8efoUO51F0Dms5YA+6BlkugAAgD8AAIA/jaqCPexrxDo46Bq6nD/rvOO6jjwm7yI9AAAAAAAAAAAa7t694eLDOdaw0TycEp0711MxOoZXz7wAAAAAAAAAAECUHT4F09C77gHpN+IRwregmDK9ozYTtwAAgD8AAIA/TSdqvSngDLpyWHS70MeWOCwL77kTVgw5AACAPwAAgD/NqsW+WedJP36CTz5WMi6+W7LzPPPF8TwAAAAAAAAAAJpalz3CbW4+9lQYPinYnL6H7wG+5ZVqPgAAAAAAAAAAAMDJuY9Gabpwlse4cRFQNuwTs7o6yOM3AACAPwAAgD/NUBC81+NSuXBW5DwUgJU5LUeHu1pLmjgAAIA/AACAP6bfpz2IM6k/RzqOPoS+0b6EyEE9pnjYPAAAAAAAAAAAc/mTPRTGg7rgjsO7sejGNdJY6zrYTDO1AACAPwAAgD8z7KK9VZ5FP3Fqpj1EBTi+RPMOvRLogLsAAAAAAAAAAPpsFb77mL47MxWaO8/63rlvWWO9mwXMOgAAgD8AAIA/M+Q0PUhh2rgzzgy8223WNpma/rrGrUW2AACAPwAAgD9mIjK94ZTmujo9FDtDKSQ8Py73O505E70AAIA/AACAP5OpFD4u/tI7jOKFOryWHTjAv3I9Qi61uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIxCv6xd8YUCUhpRSlIwBbJRN6AOMAXSUR0CE2pyGzru6dX2UKGgGaAloD0MI527XS1MbV0CUhpRSlGgVTegDaBZHQITf2qkuYhN1fZQoaAZoCWgPQwhWRbjJqD1dQJSGlFKUaBVN6ANoFkdAhPZ6pgkTpXV9lChoBmgJaA9DCL2pSIWxVSNAlIaUUpRoFUvLaBZHQIT2pz5oGpx1fZQoaAZoCWgPQwj61RwgmPsuQJSGlFKUaBVL52gWR0CFA0Z2IO6NdX2UKGgGaAloD0MIsoUgByVrWECUhpRSlGgVTegDaBZHQIU8F8NQTEl1fZQoaAZoCWgPQwgX1SKiGL5gQJSGlFKUaBVN6ANoFkdAhT+ZQP7N0XV9lChoBmgJaA9DCLGoiNNJRhVAlIaUUpRoFU3vAWgWR0CFR9UNKAavdX2UKGgGaAloD0MIYjB/hcwMXkCUhpRSlGgVTegDaBZHQIVPHwLE1l51fZQoaAZoCWgPQwgeUDblCr1iQJSGlFKUaBVN6ANoFkdAhU+3e3x4IXV9lChoBmgJaA9DCJYkz/V9SF1AlIaUUpRoFU3oA2gWR0CFWcmQ8wHrdX2UKGgGaAloD0MIzo5U3/kXYkCUhpRSlGgVTegDaBZHQIVh1hNM4951fZQoaAZoCWgPQwikObLyy6BgQJSGlFKUaBVN6ANoFkdAhWItzjm0V3V9lChoBmgJaA9DCO1HisiwFFZAlIaUUpRoFU3oA2gWR0CFbhvcafjCdX2UKGgGaAloD0MIrFPle0ZKX0CUhpRSlGgVTegDaBZHQIV5be40/GF1fZQoaAZoCWgPQwj0bFZ9rv4vQJSGlFKUaBVL2GgWR0CFggN70Fr3dX2UKGgGaAloD0MIc/bOaKvMXUCUhpRSlGgVTegDaBZHQIWQO+Cbtqp1fZQoaAZoCWgPQwjEQq1p3vlhQJSGlFKUaBVN6ANoFkdAhZxzBInSfHV9lChoBmgJaA9DCH4YITzamCJAlIaUUpRoFUvraBZHQIWdXl0YCQt1fZQoaAZoCWgPQwg7GLFPANUxQJSGlFKUaBVL2GgWR0CFo229+PRzdX2UKGgGaAloD0MIURISaRt7N0CUhpRSlGgVTegDaBZHQIWn4TPBzmx1fZQoaAZoCWgPQwi2SrA4nDFBQJSGlFKUaBVLuGgWR0CFuTw3o9s8dX2UKGgGaAloD0MIUyP0M/VmXECUhpRSlGgVTegDaBZHQIXFSY1He8B1fZQoaAZoCWgPQwhhb2JITi9cQJSGlFKUaBVN6ANoFkdAhcV8wpON53V9lChoBmgJaA9DCFd72AsFLVhAlIaUUpRoFU3oA2gWR0CF0O/k/8l5dX2UKGgGaAloD0MIPQ0YJP1bYkCUhpRSlGgVTegDaBZHQIXTjI/7iyZ1fZQoaAZoCWgPQwjay7bT1oRdQJSGlFKUaBVN6ANoFkdAhgwN4zJp4HV9lChoBmgJaA9DCCQnE7cKgWBAlIaUUpRoFU3oA2gWR0CGE0szVMEidX2UKGgGaAloD0MI0cyTawqSRkCUhpRSlGgVS9BoFkdAhhfmsV+I/XV9lChoBmgJaA9DCAJJ2LcTFGNAlIaUUpRoFU3oA2gWR0CGGY+tbLU1dX2UKGgGaAloD0MI2GMipdmbYECUhpRSlGgVTegDaBZHQIYaEpy6tkp1fZQoaAZoCWgPQwiZSdQLPh5WQJSGlFKUaBVN6ANoFkdAhiJsl1KXfXV9lChoBmgJaA9DCB07qMT15WJAlIaUUpRoFU3oA2gWR0CGKSJ7b+LndX2UKGgGaAloD0MIDFacai2MC8CUhpRSlGgVS/NoFkdAhirDNhVlw3V9lChoBmgJaA9DCERMiSR6+FZAlIaUUpRoFU3oA2gWR0CGM40AtFrmdX2UKGgGaAloD0MISS9q96v4KUCUhpRSlGgVS+9oFkdAhjdCMglniHV9lChoBmgJaA9DCKsINxlVskVAlIaUUpRoFUu5aBZHQIZRQ4yXUpd1fZQoaAZoCWgPQwht5SX/kyFgQJSGlFKUaBVN6ANoFkdAhlKm+Cbtq3V9lChoBmgJaA9DCHXpX5LKvkxAlIaUUpRoFU3oA2gWR0CGXoLJCBwudX2UKGgGaAloD0MIO44fKg08YECUhpRSlGgVTegDaBZHQIZlRvgm7at1fZQoaAZoCWgPQwjsppTXSsleQJSGlFKUaBVN6ANoFkdAhmlHpKSPl3V9lChoBmgJaA9DCAn6Cz1iXF1AlIaUUpRoFU3oA2gWR0CGed0oScsldX2UKGgGaAloD0MIz02bcRpiYkCUhpRSlGgVTegDaBZHQIaFQuZkTYd1fZQoaAZoCWgPQwhOtoE7UIMzQJSGlFKUaBVNAQFoFkdAhosMeGO+7HV9lChoBmgJaA9DCEUOETenzF5AlIaUUpRoFU3oA2gWR0CGkOhA4XGfdX2UKGgGaAloD0MIOKEQAQdrYkCUhpRSlGgVTegDaBZHQIaTjlA/s3R1fZQoaAZoCWgPQwiqu7ILBs9cQJSGlFKUaBVN6ANoFkdAhtPngHeJpHV9lChoBmgJaA9DCJ32lJyTVWZAlIaUUpRoFU3oA2gWR0CG2L9uP3i8dX2UKGgGaAloD0MIyt5SzheWWECUhpRSlGgVTegDaBZHQIbaZa/yoXN1fZQoaAZoCWgPQwhxyAbSRf9iQJSGlFKUaBVN6ANoFkdAhuQQ3xWkrXV9lChoBmgJaA9DCPdWJCaodmNAlIaUUpRoFU3oA2gWR0CG6zKkEcKgdX2UKGgGaAloD0MImfT3Ung2YUCUhpRSlGgVTegDaBZHQIbtEbrC3w11fZQoaAZoCWgPQwhSJjW0AbxBwJSGlFKUaBVL7WgWR0CG85aoMrmRdX2UKGgGaAloD0MIpwTEJFzCXUCUhpRSlGgVTegDaBZHQIb2yy6cy311fZQoaAZoCWgPQwgxJCcTt9Y4QJSGlFKUaBVL+mgWR0CG+cYkVvdedX2UKGgGaAloD0MIWTDxR1GcYUCUhpRSlGgVTegDaBZHQIcTZzzVc2R1fZQoaAZoCWgPQwhbCd0l8T9hQJSGlFKUaBVN6ANoFkdAhxS3ko4MnnV9lChoBmgJaA9DCIeKcf6mqGFAlIaUUpRoFU3oA2gWR0CHH7lOoHcDdX2UKGgGaAloD0MIbqetEcGIU0CUhpRSlGgVTegDaBZHQIcqLJEH+qB1fZQoaAZoCWgPQwhw0F59vMJjQJSGlFKUaBVN6ANoFkdAhzmV/2Cd0HV9lChoBmgJaA9DCLA4nPnVMF1AlIaUUpRoFU3oA2gWR0CHQ/gtOEdvdX2UKGgGaAloD0MIZk8Cm3OWW0CUhpRSlGgVTegDaBZHQIdJbWsijcp1fZQoaAZoCWgPQwgmxccn5A1iQJSGlFKUaBVN6ANoFkdAh06X8GcFyXV9lChoBmgJaA9DCCRgdHlz+FxAlIaUUpRoFU3oA2gWR0CHUQ1l5GBndX2UKGgGaAloD0MIHH433bLlZUCUhpRSlGgVTegDaBZHQIeWNENOM2p1fZQoaAZoCWgPQwj5g4Hn3hMVQJSGlFKUaBVL82gWR0CHmU1rIo3KdX2UKGgGaAloD0MInL8JhYiPZECUhpRSlGgVTegDaBZHQIegT26ClJp1fZQoaAZoCWgPQwiJJlDEItxjQJSGlFKUaBVN6ANoFkdAh6fdCmdiD3V9lChoBmgJaA9DCGqlEMglDWJAlIaUUpRoFU3oA2gWR0CHqckRBeHBdX2UKGgGaAloD0MIYCNJEK5CYkCUhpRSlGgVTegDaBZHQIewL2exwAF1fZQoaAZoCWgPQwgFo5I6AZ1fQJSGlFKUaBVN6ANoFkdAh7MP9kz413V9lChoBmgJaA9DCNhHp6788GZAlIaUUpRoFU3oA2gWR0CHtjgwXZXddX2UKGgGaAloD0MIz4b8M4OALUCUhpRSlGgVS/xoFkdAh8sWpZOi4HV9lChoBmgJaA9DCJUPQdVoC2JAlIaUUpRoFU3oA2gWR0CH0DpUxVQzdX2UKGgGaAloD0MIsRh1rT0BYECUhpRSlGgVTegDaBZHQIfRhYNiH7B1fZQoaAZoCWgPQwimYfiImDBlQJSGlFKUaBVNyQNoFkdAh9gQD/2kBXV9lChoBmgJaA9DCBNlbynnulhAlIaUUpRoFU3oA2gWR0CH53KqXF98dX2UKGgGaAloD0MInWUWodiOUECUhpRSlGgVS/FoFkdAh/Srzf779HV9lChoBmgJaA9DCOhsAaH1GmFAlIaUUpRoFU3oA2gWR0CH+Sa2nbZfdX2UKGgGaAloD0MIc7uX+2QoYkCUhpRSlGgVTegDaBZHQIgLCbYsd1d1fZQoaAZoCWgPQwjDSC9q95dhQJSGlFKUaBVN6ANoFkdAiBFBllK9PHV9lChoBmgJaA9DCExr09hec2JAlIaUUpRoFU3oA2gWR0CIE/fTCtRvdX2UKGgGaAloD0MIuhXCaixzYUCUhpRSlGgVTegDaBZHQIhaj0OEug91fZQoaAZoCWgPQwjchHtlXoFiQJSGlFKUaBVN6ANoFkdAiF4CSaEzwnV9lChoBmgJaA9DCL4UHjQ7t2BAlIaUUpRoFU3oA2gWR0CIZZqrR0EHdX2UKGgGaAloD0MIYjB/hUyCYECUhpRSlGgVTegDaBZHQIhtjd+G47R1fZQoaAZoCWgPQwiOklfnmAlgQJSGlFKUaBVN6ANoFkdAiHa0cfeUIXV9lChoBmgJaA9DCH9ne/SGIF5AlIaUUpRoFU3oA2gWR0CIehC6Ymb9dX2UKGgGaAloD0MI3NYWnhcoYUCUhpRSlGgVTegDaBZHQIh9YfGMn7Z1fZQoaAZoCWgPQwhYyjLEsdRhQJSGlFKUaBVN6ANoFkdAiJP8AzYVZnV9lChoBmgJaA9DCIp3gCct7BfAlIaUUpRoFUu4aBZHQIiUeAwwj+t1fZQoaAZoCWgPQwho7Es2nrZgQJSGlFKUaBVN6ANoFkdAiJlTZ6D5CXV9lChoBmgJaA9DCO0L6IU76WJAlIaUUpRoFU3oA2gWR0CIoemReTmodX2UKGgGaAloD0MICFdAoR75Y0CUhpRSlGgVTegDaBZHQIixxVjqfOF1fZQoaAZoCWgPQwhRai+i7XBlQJSGlFKUaBVN6ANoFkdAiL/IPK+zt3V9lChoBmgJaA9DCIaTNH9MS2BAlIaUUpRoFU3oA2gWR0CIxERB/qgRdX2UKGgGaAloD0MIBcB4Bg33XkCUhpRSlGgVTegDaBZHQIjWzpTuOS51fZQoaAZoCWgPQwhy+Q/pN1NkQJSGlFKUaBVN6ANoFkdAiN1RmTTvzHV9lChoBmgJaA9DCKgZUkXxYWFAlIaUUpRoFU3oA2gWR0CI4FFfiPyTdX2UKGgGaAloD0MItRX7y+4ZIMCUhpRSlGgVS/poFkdAiOy2HDaXbHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2898bb3fc44a5329dddc16cdf38bf703b3007462d31fc84b60a9a04aed2d1f4d
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:029261c67f65048278129d684d0611be90e866345840f7cd6cb2fab579724a79
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e85deb9b515c58d9046edd271ec0478bd3013f61f6a95183ca386e30c54442a
|
3 |
+
size 249494
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 181.33390159305944, "std_reward": 55.310653394557896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T00:55:27.987983"}
|