File size: 1,803 Bytes
090fe41 2cbeca7 090fe41 2cbeca7 090fe41 0d69d0e 090fe41 3255554 0d69d0e 090fe41 0d69d0e 090fe41 2cbeca7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large
tags:
- generated_from_trainer
model-index:
- name: videomae-large-finetuned-deepfake-subset
results: []
metrics:
- f1
---
# videomae-large-finetuned-deepfake-subset
This model is a fine-tuned version of [MCG-NJU/videomae-large](https://huggingface.co/MCG-NJU/videomae-large) on the [Deepfake
Detection Challenge](https://www.kaggle.com/competitions/deepfake-detection-challenge) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2588
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4470
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6169 | 0.1 | 447 | 0.6023 |
| 0.6086 | 1.1 | 894 | 0.5055 |
| 0.376 | 2.1 | 1341 | 0.4250 |
| 0.3863 | 3.1 | 1788 | 0.6712 |
| 0.249 | 4.1 | 2235 | 0.3951 |
| 0.3233 | 5.1 | 2682 | 0.4969 |
| 0.1995 | 6.1 | 3129 | 0.3744 |
| 0.0874 | 7.1 | 3576 | 0.4104 |
| 0.2518 | 8.1 | 4023 | 0.2647 |
| 0.0118 | 9.1 | 4470 | 0.3337 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1 |