File size: 2,820 Bytes
5b62170 84dddb1 5b62170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
tags:
- generated_from_trainer
datasets:
- jnlpba
widget:
- text: "The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division."
- text: "It consists of 25 exons encoding a 1,278-amino acid glycoprotein that is composed of 13 transmembrane domains"
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: biobert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: jnlpba
type: jnlpba
config: jnlpba
split: train
args: jnlpba
metrics:
- name: Precision
type: precision
value: 0.6550939663699308
- name: Recall
type: recall
value: 0.7646040175479104
- name: F1
type: f1
value: 0.7056253995312167
- name: Accuracy
type: accuracy
value: 0.9107839603371846
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert-finetuned-ner
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5113
- Precision: 0.6551
- Recall: 0.7646
- F1: 0.7056
- Accuracy: 0.9108
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1815 | 1.0 | 2319 | 0.2706 | 0.6538 | 0.7704 | 0.7073 | 0.9160 |
| 0.1226 | 2.0 | 4638 | 0.3230 | 0.6524 | 0.7675 | 0.7053 | 0.9118 |
| 0.0813 | 3.0 | 6957 | 0.3974 | 0.6483 | 0.7611 | 0.7002 | 0.9101 |
| 0.0521 | 4.0 | 9276 | 0.4529 | 0.6575 | 0.7652 | 0.7073 | 0.9121 |
| 0.0356 | 5.0 | 11595 | 0.5113 | 0.6551 | 0.7646 | 0.7056 | 0.9108 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|