Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 238.70 +/- 9.22
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00378ff170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00378ff200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00378ff290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00378ff320>", "_build": "<function ActorCriticPolicy._build at 0x7f00378ff3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00378ff440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00378ff4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00378ff560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00378ff5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00378ff680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00378ff710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00379590c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651780337.084117, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbi/D2FS9M4atxLvCTbOrrarxY8eVsmuwAAgD8AAIA/AHMEPfaUOLqbju+5/XgAtiU/DroH0wg5AACAPwAAgD+aLUk8j2oMul9CDTt8FYm20dn/Ond7grUAAIA/AACAP3Nryb0puAS6VXnVOhE42zXc/my667n1uQAAgD8AAIA/hqI0voWjvTpKcfk5BEZCtjHehby0bQ25AACAPwAAgD+afgM9SDOKuqVOHTmAoTszl0iXukmEM7gAAIA/AACAP+6eBr/IJ1q+FuSRvktri72birA+IypeNgAAgD8AAAAA8xjfvVwHa7oChaq756wTt/+IF7sa48Y6AACAPwAAgD9gHEi+JINGPDQ0MjisREa2cF3fvWBdXLcAAIA/AACAP/4ot74fZZ86gA6iukWRULhHMiI97rPZOQAAgD8AAIA/AM1yPcO9aLp/iJQ6zZL8tCLkDDsmkay5AACAPwAAgD+241S+aaAYvOXUVzs8zSs5xKiEPf1Z8bkAAIA/AACAPzPMwT0fLfG593Y0uYBvpjOMI8y6ArNTOAAAgD8AAIA/M4kpvY8+dLqOvni6gjXstRXySDr3lY45AACAPwAAgD/N8nQ+8cc8PIpGj7t5U6K5rUTSPRb89rkAAIA/AACAP82F5rzhmvu4kcYAuQlSULSHEqo72NsXOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3rBtUWa4YECUhpRSlIwBbJRN6AOMAXSUR0CCBOX0oSctdX2UKGgGaAloD0MIbyu9NhtBV0CUhpRSlGgVTegDaBZHQIISzQ1JlJ91fZQoaAZoCWgPQwj/HydMGB9WQJSGlFKUaBVN6ANoFkdAghgWWyC4BnV9lChoBmgJaA9DCFJ95xcl0FhAlIaUUpRoFU3oA2gWR0CCGGqPOpsHdX2UKGgGaAloD0MItvKS/8knPECUhpRSlGgVTTABaBZHQIIYt87ZFod1fZQoaAZoCWgPQwhCYOXQooxgQJSGlFKUaBVN6ANoFkdAgh5lGPPszHV9lChoBmgJaA9DCGN7Lei9UGJAlIaUUpRoFU3oA2gWR0CCI84iosI3dX2UKGgGaAloD0MIs++K4H+WXECUhpRSlGgVTegDaBZHQIIu0C9ytFN1fZQoaAZoCWgPQwhDqb2Itis8QJSGlFKUaBVNGAFoFkdAgjnij1wo9nV9lChoBmgJaA9DCIwRiULLTjpAlIaUUpRoFUvcaBZHQIKIQxHoX9B1fZQoaAZoCWgPQwiob5nTZWdgQJSGlFKUaBVN6ANoFkdAgpOu09hZyXV9lChoBmgJaA9DCLq/ety3Y1lAlIaUUpRoFU3oA2gWR0CCloUcn3L3dX2UKGgGaAloD0MIakyIuaS6JMCUhpRSlGgVS+JoFkdAgpawDeTFEXV9lChoBmgJaA9DCFBu2/eocWJAlIaUUpRoFU3oA2gWR0CCmVeenQ6ZdX2UKGgGaAloD0MIlWOyuP8yX0CUhpRSlGgVTegDaBZHQIKfctsenyd1fZQoaAZoCWgPQwgewY2ULZNiQJSGlFKUaBVN6ANoFkdAgqdvxH5JsnV9lChoBmgJaA9DCAQ8aeGygmJAlIaUUpRoFU3oA2gWR0CCqMeZG8VYdX2UKGgGaAloD0MIFD/G3LWIX0CUhpRSlGgVTegDaBZHQILHmTRplBh1fZQoaAZoCWgPQwji578Hr+peQJSGlFKUaBVN6ANoFkdAgsv420iQk3V9lChoBmgJaA9DCL2nctpTL2RAlIaUUpRoFU3oA2gWR0CC0mq6vq1PdX2UKGgGaAloD0MIzSIUW0GUWkCUhpRSlGgVTegDaBZHQILkwACGN711fZQoaAZoCWgPQwi4rMJmgJJcQJSGlFKUaBVN6ANoFkdAguUQmeDnNnV9lChoBmgJaA9DCJf9utOdjVZAlIaUUpRoFU3oA2gWR0CC5Vp0wJw9dX2UKGgGaAloD0MIskrpmd5wYUCUhpRSlGgVTegDaBZHQILqg9A5aNd1fZQoaAZoCWgPQwg4SIjyBU0PwJSGlFKUaBVL42gWR0CC7CbI91U3dX2UKGgGaAloD0MIFLAdjFgFZECUhpRSlGgVTegDaBZHQILvbCzkZJl1fZQoaAZoCWgPQwgBLzNslI1gQJSGlFKUaBVN6ANoFkdAg0/jlYEGJXV9lChoBmgJaA9DCGoxeJh2ZGBAlIaUUpRoFU3oA2gWR0CDWf3Qla8pdX2UKGgGaAloD0MItw2jIHjhYkCUhpRSlGgVTegDaBZHQINcXOSntOV1fZQoaAZoCWgPQwgfLGNDN6FiQJSGlFKUaBVN6ANoFkdAg1yFLvkRz3V9lChoBmgJaA9DCKuy74rgj15AlIaUUpRoFU3oA2gWR0CDXse8PFvRdX2UKGgGaAloD0MIml5iLFN1YECUhpRSlGgVTegDaBZHQINj1wPy08h1fZQoaAZoCWgPQwizQLtDirpfQJSGlFKUaBVN6ANoFkdAg2p4nv2GqXV9lChoBmgJaA9DCNieWRIgQ2NAlIaUUpRoFU3oA2gWR0CDa6bfgrH3dX2UKGgGaAloD0MIIv5hS4+WIkCUhpRSlGgVS8RoFkdAg3GpiI+GGnV9lChoBmgJaA9DCD9z1qccIzxAlIaUUpRoFUu8aBZHQIN0p04iosJ1fZQoaAZoCWgPQwg2zTtO0U1BQJSGlFKUaBVLsGgWR0CDgP0UXYUWdX2UKGgGaAloD0MITkUqjC2vYkCUhpRSlGgVTegDaBZHQIOFRJZntfJ1fZQoaAZoCWgPQwh6U5EK4xVmQJSGlFKUaBVN6ANoFkdAg47NNSIgvHV9lChoBmgJaA9DCD7PnzYqKW5AlIaUUpRoFU2YA2gWR0CDnd6yB06pdX2UKGgGaAloD0MITRWMSupLXECUhpRSlGgVTegDaBZHQIOg00m+j/N1fZQoaAZoCWgPQwjrGi0Heh5ZQJSGlFKUaBVN6ANoFkdAg6Eh68g6l3V9lChoBmgJaA9DCLnEkQciBlpAlIaUUpRoFU3oA2gWR0CDoWZBLPD6dX2UKGgGaAloD0MI26Z4XFTJYUCUhpRSlGgVTegDaBZHQIOmibONYKZ1fZQoaAZoCWgPQwhkraHUXlpfQJSGlFKUaBVN6ANoFkdAg6t2vKU3XXV9lChoBmgJaA9DCBO3CmIgUmBAlIaUUpRoFU3oA2gWR0CD1liXIEKWdX2UKGgGaAloD0MIE/BrJImtYECUhpRSlGgVTegDaBZHQIQajp1RtP51fZQoaAZoCWgPQwgXuaerO11hQJSGlFKUaBVN6ANoFkdAhBq4R28qWnV9lChoBmgJaA9DCFXCE3p9mmFAlIaUUpRoFU3oA2gWR0CEIyy+pOvddX2UKGgGaAloD0MIEYsYdpiQY0CUhpRSlGgVTegDaBZHQIQrKbUgB911fZQoaAZoCWgPQwhs6jwqfk9gQJSGlFKUaBVN6ANoFkdAhDOuQZGayHV9lChoBmgJaA9DCGgj100pkmRAlIaUUpRoFU3oA2gWR0CENyPXkHUudX2UKGgGaAloD0MIOnR63o0lMcCUhpRSlGgVS+loFkdAhDqdlEqlQHV9lChoBmgJaA9DCKcExCTcK2BAlIaUUpRoFU3oA2gWR0CEQ2vZAY51dX2UKGgGaAloD0MIJ6JfWz89YUCUhpRSlGgVTegDaBZHQIRHrOX3QD51fZQoaAZoCWgPQwiRuMfSB2VrQJSGlFKUaBVN1AJoFkdAhEh0h/y5JHV9lChoBmgJaA9DCGx4eqUs1lpAlIaUUpRoFU3oA2gWR0CEUNbxEv0zdX2UKGgGaAloD0MIkzfAzHezW0CUhpRSlGgVTegDaBZHQIRfDK3d9Dx1fZQoaAZoCWgPQwjmstE5P8tfQJSGlFKUaBVN6ANoFkdAhGHVuJk5InV9lChoBmgJaA9DCB8OEqJ8amNAlIaUUpRoFU3oA2gWR0CEYhtIClrNdX2UKGgGaAloD0MIMLq8OdxrZ0CUhpRSlGgVTegDaBZHQIRiX7WNFSd1fZQoaAZoCWgPQwggC9EhcIFgQJSGlFKUaBVN6ANoFkdAhGd6JQ+EAnV9lChoBmgJaA9DCD230JUIlPk/lIaUUpRoFUvQaBZHQISCnR1HOKR1fZQoaAZoCWgPQwhb6iCvB1FhQJSGlFKUaBVN6ANoFkdAhJbt2LYPG3V9lChoBmgJaA9DCARxHk5gSGBAlIaUUpRoFU3oA2gWR0CE2rrJKaoddX2UKGgGaAloD0MIZTcz+tEYY0CUhpRSlGgVTegDaBZHQITjQ0Mw1zh1fZQoaAZoCWgPQwjcSq/NxkJeQJSGlFKUaBVN6ANoFkdAhOs4/mknC3V9lChoBmgJaA9DCOse2Vw1YzhAlIaUUpRoFUvHaBZHQITrYT0xubZ1fZQoaAZoCWgPQwi9OseA7NBiQJSGlFKUaBVN6ANoFkdAhPP/6oESunV9lChoBmgJaA9DCOWYLO4/oV5AlIaUUpRoFU3oA2gWR0CE91pu/DcedX2UKGgGaAloD0MIhC12+yw0YUCUhpRSlGgVTegDaBZHQIT65uQ6p5x1fZQoaAZoCWgPQwgVHjS7bmJgQJSGlFKUaBVN6ANoFkdAhQNoy9EkSnV9lChoBmgJaA9DCPncCfbf/GFAlIaUUpRoFU3oA2gWR0CFB2HwgDA8dX2UKGgGaAloD0MIYizTLxG2VkCUhpRSlGgVTegDaBZHQIUIK7I1cdJ1fZQoaAZoCWgPQwgonN1aptRhQJSGlFKUaBVN6ANoFkdAhQ/px//ecnV9lChoBmgJaA9DCByXcVMD3GJAlIaUUpRoFU3oA2gWR0CFHbapxWDIdX2UKGgGaAloD0MIw0Xu6eoEX0CUhpRSlGgVTegDaBZHQIUgm6kIomZ1fZQoaAZoCWgPQwg0hGOWPctiQJSGlFKUaBVN6ANoFkdAhSDoPbwjMXV9lChoBmgJaA9DCMYVF0flCmZAlIaUUpRoFU3oA2gWR0CFIScNpdrwdX2UKGgGaAloD0MInS/2XnzhMcCUhpRSlGgVS9ZoFkdAhSs7Q9ic5XV9lChoBmgJaA9DCN1e0hitZUJAlIaUUpRoFUvNaBZHQIU6kfA9FF51fZQoaAZoCWgPQwiTcYxkDxhjQJSGlFKUaBVN6ANoFkdAhUCvHLida3V9lChoBmgJaA9DCCf3OxQF1mBAlIaUUpRoFU3oA2gWR0CFlsBZIQOGdX2UKGgGaAloD0MIVu9wOzSASUCUhpRSlGgVTRYBaBZHQIWZGhqTKT11fZQoaAZoCWgPQwg7ONibGLZiQJSGlFKUaBVN6ANoFkdAhZ82ys0YTHV9lChoBmgJaA9DCCGSIcfWRl1AlIaUUpRoFU3oA2gWR0CFpvNeMQ2/dX2UKGgGaAloD0MITfT5KCNoXkCUhpRSlGgVTegDaBZHQIWnG+7Dl5p1fZQoaAZoCWgPQwhortNISxVeQJSGlFKUaBVN6ANoFkdAha+gnUlRg3V9lChoBmgJaA9DCI8zTdh+sVlAlIaUUpRoFU3oA2gWR0CFsv5LytmudX2UKGgGaAloD0MINxyWBn7QXkCUhpRSlGgVTegDaBZHQIW2fCj1wo91fZQoaAZoCWgPQwgKvmn67NZbQJSGlFKUaBVN6ANoFkdAhb8DjR2KVXV9lChoBmgJaA9DCBwkRPkC9GJAlIaUUpRoFU3oA2gWR0CFwx8JD3M7dX2UKGgGaAloD0MIZaVJKejVYECUhpRSlGgVTegDaBZHQIXD4dCE6DJ1fZQoaAZoCWgPQwgvGcdI9qgvQJSGlFKUaBVLwmgWR0CFy1hzeXRgdX2UKGgGaAloD0MIiuYBLPLfYkCUhpRSlGgVTegDaBZHQIXaLl5nlGR1fZQoaAZoCWgPQwhT0O0ljUtjQJSGlFKUaBVN6ANoFkdAhdzuqm0mdHV9lChoBmgJaA9DCN/+XDRkemBAlIaUUpRoFU3oA2gWR0CF3TbVSXMRdX2UKGgGaAloD0MIi4nNx7VnZECUhpRSlGgVTegDaBZHQIXor17IDHR1fZQoaAZoCWgPQwg91owM8gNqQJSGlFKUaBVNNQFoFkdAheyNB4Uvf3V9lChoBmgJaA9DCB1WuOUjBF5AlIaUUpRoFU3oA2gWR0CF/9qkdmxudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:974393d0677e245b34da5a4346924b6dd4389c6b847296fb62f3ab0c6da39ac9
|
3 |
+
size 144031
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00378ff170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00378ff200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00378ff290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00378ff320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f00378ff3b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f00378ff440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00378ff4d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f00378ff560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00378ff5f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00378ff680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00378ff710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f00379590c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651780337.084117,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbi/D2FS9M4atxLvCTbOrrarxY8eVsmuwAAgD8AAIA/AHMEPfaUOLqbju+5/XgAtiU/DroH0wg5AACAPwAAgD+aLUk8j2oMul9CDTt8FYm20dn/Ond7grUAAIA/AACAP3Nryb0puAS6VXnVOhE42zXc/my667n1uQAAgD8AAIA/hqI0voWjvTpKcfk5BEZCtjHehby0bQ25AACAPwAAgD+afgM9SDOKuqVOHTmAoTszl0iXukmEM7gAAIA/AACAP+6eBr/IJ1q+FuSRvktri72birA+IypeNgAAgD8AAAAA8xjfvVwHa7oChaq756wTt/+IF7sa48Y6AACAPwAAgD9gHEi+JINGPDQ0MjisREa2cF3fvWBdXLcAAIA/AACAP/4ot74fZZ86gA6iukWRULhHMiI97rPZOQAAgD8AAIA/AM1yPcO9aLp/iJQ6zZL8tCLkDDsmkay5AACAPwAAgD+241S+aaAYvOXUVzs8zSs5xKiEPf1Z8bkAAIA/AACAPzPMwT0fLfG593Y0uYBvpjOMI8y6ArNTOAAAgD8AAIA/M4kpvY8+dLqOvni6gjXstRXySDr3lY45AACAPwAAgD/N8nQ+8cc8PIpGj7t5U6K5rUTSPRb89rkAAIA/AACAP82F5rzhmvu4kcYAuQlSULSHEqo72NsXOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3rBtUWa4YECUhpRSlIwBbJRN6AOMAXSUR0CCBOX0oSctdX2UKGgGaAloD0MIbyu9NhtBV0CUhpRSlGgVTegDaBZHQIISzQ1JlJ91fZQoaAZoCWgPQwj/HydMGB9WQJSGlFKUaBVN6ANoFkdAghgWWyC4BnV9lChoBmgJaA9DCFJ95xcl0FhAlIaUUpRoFU3oA2gWR0CCGGqPOpsHdX2UKGgGaAloD0MItvKS/8knPECUhpRSlGgVTTABaBZHQIIYt87ZFod1fZQoaAZoCWgPQwhCYOXQooxgQJSGlFKUaBVN6ANoFkdAgh5lGPPszHV9lChoBmgJaA9DCGN7Lei9UGJAlIaUUpRoFU3oA2gWR0CCI84iosI3dX2UKGgGaAloD0MIs++K4H+WXECUhpRSlGgVTegDaBZHQIIu0C9ytFN1fZQoaAZoCWgPQwhDqb2Itis8QJSGlFKUaBVNGAFoFkdAgjnij1wo9nV9lChoBmgJaA9DCIwRiULLTjpAlIaUUpRoFUvcaBZHQIKIQxHoX9B1fZQoaAZoCWgPQwiob5nTZWdgQJSGlFKUaBVN6ANoFkdAgpOu09hZyXV9lChoBmgJaA9DCLq/ety3Y1lAlIaUUpRoFU3oA2gWR0CCloUcn3L3dX2UKGgGaAloD0MIakyIuaS6JMCUhpRSlGgVS+JoFkdAgpawDeTFEXV9lChoBmgJaA9DCFBu2/eocWJAlIaUUpRoFU3oA2gWR0CCmVeenQ6ZdX2UKGgGaAloD0MIlWOyuP8yX0CUhpRSlGgVTegDaBZHQIKfctsenyd1fZQoaAZoCWgPQwgewY2ULZNiQJSGlFKUaBVN6ANoFkdAgqdvxH5JsnV9lChoBmgJaA9DCAQ8aeGygmJAlIaUUpRoFU3oA2gWR0CCqMeZG8VYdX2UKGgGaAloD0MIFD/G3LWIX0CUhpRSlGgVTegDaBZHQILHmTRplBh1fZQoaAZoCWgPQwji578Hr+peQJSGlFKUaBVN6ANoFkdAgsv420iQk3V9lChoBmgJaA9DCL2nctpTL2RAlIaUUpRoFU3oA2gWR0CC0mq6vq1PdX2UKGgGaAloD0MIzSIUW0GUWkCUhpRSlGgVTegDaBZHQILkwACGN711fZQoaAZoCWgPQwi4rMJmgJJcQJSGlFKUaBVN6ANoFkdAguUQmeDnNnV9lChoBmgJaA9DCJf9utOdjVZAlIaUUpRoFU3oA2gWR0CC5Vp0wJw9dX2UKGgGaAloD0MIskrpmd5wYUCUhpRSlGgVTegDaBZHQILqg9A5aNd1fZQoaAZoCWgPQwg4SIjyBU0PwJSGlFKUaBVL42gWR0CC7CbI91U3dX2UKGgGaAloD0MIFLAdjFgFZECUhpRSlGgVTegDaBZHQILvbCzkZJl1fZQoaAZoCWgPQwgBLzNslI1gQJSGlFKUaBVN6ANoFkdAg0/jlYEGJXV9lChoBmgJaA9DCGoxeJh2ZGBAlIaUUpRoFU3oA2gWR0CDWf3Qla8pdX2UKGgGaAloD0MItw2jIHjhYkCUhpRSlGgVTegDaBZHQINcXOSntOV1fZQoaAZoCWgPQwgfLGNDN6FiQJSGlFKUaBVN6ANoFkdAg1yFLvkRz3V9lChoBmgJaA9DCKuy74rgj15AlIaUUpRoFU3oA2gWR0CDXse8PFvRdX2UKGgGaAloD0MIml5iLFN1YECUhpRSlGgVTegDaBZHQINj1wPy08h1fZQoaAZoCWgPQwizQLtDirpfQJSGlFKUaBVN6ANoFkdAg2p4nv2GqXV9lChoBmgJaA9DCNieWRIgQ2NAlIaUUpRoFU3oA2gWR0CDa6bfgrH3dX2UKGgGaAloD0MIIv5hS4+WIkCUhpRSlGgVS8RoFkdAg3GpiI+GGnV9lChoBmgJaA9DCD9z1qccIzxAlIaUUpRoFUu8aBZHQIN0p04iosJ1fZQoaAZoCWgPQwg2zTtO0U1BQJSGlFKUaBVLsGgWR0CDgP0UXYUWdX2UKGgGaAloD0MITkUqjC2vYkCUhpRSlGgVTegDaBZHQIOFRJZntfJ1fZQoaAZoCWgPQwh6U5EK4xVmQJSGlFKUaBVN6ANoFkdAg47NNSIgvHV9lChoBmgJaA9DCD7PnzYqKW5AlIaUUpRoFU2YA2gWR0CDnd6yB06pdX2UKGgGaAloD0MITRWMSupLXECUhpRSlGgVTegDaBZHQIOg00m+j/N1fZQoaAZoCWgPQwjrGi0Heh5ZQJSGlFKUaBVN6ANoFkdAg6Eh68g6l3V9lChoBmgJaA9DCLnEkQciBlpAlIaUUpRoFU3oA2gWR0CDoWZBLPD6dX2UKGgGaAloD0MI26Z4XFTJYUCUhpRSlGgVTegDaBZHQIOmibONYKZ1fZQoaAZoCWgPQwhkraHUXlpfQJSGlFKUaBVN6ANoFkdAg6t2vKU3XXV9lChoBmgJaA9DCBO3CmIgUmBAlIaUUpRoFU3oA2gWR0CD1liXIEKWdX2UKGgGaAloD0MIE/BrJImtYECUhpRSlGgVTegDaBZHQIQajp1RtP51fZQoaAZoCWgPQwgXuaerO11hQJSGlFKUaBVN6ANoFkdAhBq4R28qWnV9lChoBmgJaA9DCFXCE3p9mmFAlIaUUpRoFU3oA2gWR0CEIyy+pOvddX2UKGgGaAloD0MIEYsYdpiQY0CUhpRSlGgVTegDaBZHQIQrKbUgB911fZQoaAZoCWgPQwhs6jwqfk9gQJSGlFKUaBVN6ANoFkdAhDOuQZGayHV9lChoBmgJaA9DCGgj100pkmRAlIaUUpRoFU3oA2gWR0CENyPXkHUudX2UKGgGaAloD0MIOnR63o0lMcCUhpRSlGgVS+loFkdAhDqdlEqlQHV9lChoBmgJaA9DCKcExCTcK2BAlIaUUpRoFU3oA2gWR0CEQ2vZAY51dX2UKGgGaAloD0MIJ6JfWz89YUCUhpRSlGgVTegDaBZHQIRHrOX3QD51fZQoaAZoCWgPQwiRuMfSB2VrQJSGlFKUaBVN1AJoFkdAhEh0h/y5JHV9lChoBmgJaA9DCGx4eqUs1lpAlIaUUpRoFU3oA2gWR0CEUNbxEv0zdX2UKGgGaAloD0MIkzfAzHezW0CUhpRSlGgVTegDaBZHQIRfDK3d9Dx1fZQoaAZoCWgPQwjmstE5P8tfQJSGlFKUaBVN6ANoFkdAhGHVuJk5InV9lChoBmgJaA9DCB8OEqJ8amNAlIaUUpRoFU3oA2gWR0CEYhtIClrNdX2UKGgGaAloD0MIMLq8OdxrZ0CUhpRSlGgVTegDaBZHQIRiX7WNFSd1fZQoaAZoCWgPQwggC9EhcIFgQJSGlFKUaBVN6ANoFkdAhGd6JQ+EAnV9lChoBmgJaA9DCD230JUIlPk/lIaUUpRoFUvQaBZHQISCnR1HOKR1fZQoaAZoCWgPQwhb6iCvB1FhQJSGlFKUaBVN6ANoFkdAhJbt2LYPG3V9lChoBmgJaA9DCARxHk5gSGBAlIaUUpRoFU3oA2gWR0CE2rrJKaoddX2UKGgGaAloD0MIZTcz+tEYY0CUhpRSlGgVTegDaBZHQITjQ0Mw1zh1fZQoaAZoCWgPQwjcSq/NxkJeQJSGlFKUaBVN6ANoFkdAhOs4/mknC3V9lChoBmgJaA9DCOse2Vw1YzhAlIaUUpRoFUvHaBZHQITrYT0xubZ1fZQoaAZoCWgPQwi9OseA7NBiQJSGlFKUaBVN6ANoFkdAhPP/6oESunV9lChoBmgJaA9DCOWYLO4/oV5AlIaUUpRoFU3oA2gWR0CE91pu/DcedX2UKGgGaAloD0MIhC12+yw0YUCUhpRSlGgVTegDaBZHQIT65uQ6p5x1fZQoaAZoCWgPQwgVHjS7bmJgQJSGlFKUaBVN6ANoFkdAhQNoy9EkSnV9lChoBmgJaA9DCPncCfbf/GFAlIaUUpRoFU3oA2gWR0CFB2HwgDA8dX2UKGgGaAloD0MIYizTLxG2VkCUhpRSlGgVTegDaBZHQIUIK7I1cdJ1fZQoaAZoCWgPQwgonN1aptRhQJSGlFKUaBVN6ANoFkdAhQ/px//ecnV9lChoBmgJaA9DCByXcVMD3GJAlIaUUpRoFU3oA2gWR0CFHbapxWDIdX2UKGgGaAloD0MIw0Xu6eoEX0CUhpRSlGgVTegDaBZHQIUgm6kIomZ1fZQoaAZoCWgPQwg0hGOWPctiQJSGlFKUaBVN6ANoFkdAhSDoPbwjMXV9lChoBmgJaA9DCMYVF0flCmZAlIaUUpRoFU3oA2gWR0CFIScNpdrwdX2UKGgGaAloD0MInS/2XnzhMcCUhpRSlGgVS9ZoFkdAhSs7Q9ic5XV9lChoBmgJaA9DCN1e0hitZUJAlIaUUpRoFUvNaBZHQIU6kfA9FF51fZQoaAZoCWgPQwiTcYxkDxhjQJSGlFKUaBVN6ANoFkdAhUCvHLida3V9lChoBmgJaA9DCCf3OxQF1mBAlIaUUpRoFU3oA2gWR0CFlsBZIQOGdX2UKGgGaAloD0MIVu9wOzSASUCUhpRSlGgVTRYBaBZHQIWZGhqTKT11fZQoaAZoCWgPQwg7ONibGLZiQJSGlFKUaBVN6ANoFkdAhZ82ys0YTHV9lChoBmgJaA9DCCGSIcfWRl1AlIaUUpRoFU3oA2gWR0CFpvNeMQ2/dX2UKGgGaAloD0MITfT5KCNoXkCUhpRSlGgVTegDaBZHQIWnG+7Dl5p1fZQoaAZoCWgPQwhortNISxVeQJSGlFKUaBVN6ANoFkdAha+gnUlRg3V9lChoBmgJaA9DCI8zTdh+sVlAlIaUUpRoFU3oA2gWR0CFsv5LytmudX2UKGgGaAloD0MINxyWBn7QXkCUhpRSlGgVTegDaBZHQIW2fCj1wo91fZQoaAZoCWgPQwgKvmn67NZbQJSGlFKUaBVN6ANoFkdAhb8DjR2KVXV9lChoBmgJaA9DCBwkRPkC9GJAlIaUUpRoFU3oA2gWR0CFwx8JD3M7dX2UKGgGaAloD0MIZaVJKejVYECUhpRSlGgVTegDaBZHQIXD4dCE6DJ1fZQoaAZoCWgPQwgvGcdI9qgvQJSGlFKUaBVLwmgWR0CFy1hzeXRgdX2UKGgGaAloD0MIiuYBLPLfYkCUhpRSlGgVTegDaBZHQIXaLl5nlGR1fZQoaAZoCWgPQwhT0O0ljUtjQJSGlFKUaBVN6ANoFkdAhdzuqm0mdHV9lChoBmgJaA9DCN/+XDRkemBAlIaUUpRoFU3oA2gWR0CF3TbVSXMRdX2UKGgGaAloD0MIi4nNx7VnZECUhpRSlGgVTegDaBZHQIXor17IDHR1fZQoaAZoCWgPQwg91owM8gNqQJSGlFKUaBVNNQFoFkdAheyNB4Uvf3V9lChoBmgJaA9DCB1WuOUjBF5AlIaUUpRoFU3oA2gWR0CF/9qkdmxudWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1498ef91c632d830bbd81acd65258fc64016459e4d36e8f70d2d6226c8777ff1
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:192aed9983c81dce7a6e1a60eaa8f4037d9c371dd97b3d54b4e1be15576034c8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8374abbcf55260e367688652cfad1bb528d1d669132556d5599db626e47d9ae
|
3 |
+
size 251039
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 238.69540244564823, "std_reward": 9.217522049851038, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T20:07:04.629885"}
|