simonycl commited on
Commit
ba41173
·
verified ·
1 Parent(s): 4e5f3f4

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: CohereForAI/aya-23-8B
5
+ tags:
6
+ - alignment-handbook
7
+ - generated_from_trainer
8
+ datasets:
9
+ - simonycl/aya-23-8B_advprompter_jailbreak
10
+ model-index:
11
+ - name: aya-advprompter
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # aya-advprompter
19
+
20
+ This model is a fine-tuned version of [CohereForAI/aya-23-8B](https://huggingface.co/CohereForAI/aya-23-8B) on the simonycl/aya-23-8B_advprompter_jailbreak dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0459
23
+ - Rewards/chosen: 0.0182
24
+ - Rewards/rejected: -6.7884
25
+ - Rewards/accuracies: 1.0
26
+ - Rewards/margins: 6.8065
27
+ - Logps/rejected: -867.2261
28
+ - Logps/chosen: -114.6688
29
+ - Logits/rejected: 0.0796
30
+ - Logits/chosen: -0.2307
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 5e-07
50
+ - train_batch_size: 1
51
+ - eval_batch_size: 1
52
+ - seed: 42
53
+ - distributed_type: multi-GPU
54
+ - num_devices: 2
55
+ - gradient_accumulation_steps: 16
56
+ - total_train_batch_size: 32
57
+ - total_eval_batch_size: 2
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: cosine
60
+ - lr_scheduler_warmup_ratio: 0.05
61
+ - num_epochs: 2
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
66
+ |:-------------:|:------:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
67
+ | 0.5229 | 0.3612 | 30 | -0.4619 | -0.3434 | -98.2886 | -212.0101 | 0.5059 | 1.0 | 0.1820 | 0.4182 | -0.2362 |
68
+ | 0.2411 | 0.7223 | 60 | -0.4067 | -0.2327 | -88.9001 | -330.7860 | 0.2135 | 1.0 | 0.2758 | 1.6998 | -1.4240 |
69
+ | 0.0634 | 1.0835 | 90 | -0.2580 | -0.0357 | -99.5121 | -607.3592 | 0.0751 | 1.0 | 0.1697 | 4.3594 | -4.1897 |
70
+ | 0.0452 | 1.4454 | 120 | 0.0532 | 0.0757 | -5.9396 | 1.0 | 6.0153 | -782.3494 | -108.9159 | 0.0380 | -0.2345 |
71
+ | 0.0307 | 1.8066 | 150 | 0.0459 | 0.0182 | -6.7884 | 1.0 | 6.8065 | -867.2261 | -114.6688 | 0.0796 | -0.2307 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.44.2
77
+ - Pytorch 2.3.0+cu121
78
+ - Datasets 2.21.0
79
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.999247554552295,
3
+ "eval_logits/chosen": -0.2070515751838684,
4
+ "eval_logits/rejected": 0.09358108043670654,
5
+ "eval_logps/chosen": -117.798583984375,
6
+ "eval_logps/rejected": -908.2842407226562,
7
+ "eval_loss": 0.04265851154923439,
8
+ "eval_rewards/accuracies": 1.0,
9
+ "eval_rewards/chosen": -0.013141422532498837,
10
+ "eval_rewards/margins": 7.185807228088379,
11
+ "eval_rewards/rejected": -7.198948383331299,
12
+ "eval_runtime": 193.1837,
13
+ "eval_samples": 546,
14
+ "eval_samples_per_second": 2.826,
15
+ "eval_steps_per_second": 1.413,
16
+ "total_flos": 0.0,
17
+ "train_loss": 0.01645123219139964,
18
+ "train_runtime": 7014.6347,
19
+ "train_samples": 2657,
20
+ "train_samples_per_second": 0.758,
21
+ "train_steps_per_second": 0.024
22
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "CohereForAI/aya-23-8B",
3
+ "architectures": [
4
+ "CohereForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 5,
9
+ "eos_token_id": 255001,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "layer_norm_eps": 1e-05,
15
+ "logit_scale": 0.0625,
16
+ "max_position_embeddings": 8192,
17
+ "model_type": "cohere",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "pad_token_id": 0,
22
+ "rope_theta": 10000,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.44.2",
25
+ "use_cache": true,
26
+ "use_qk_norm": false,
27
+ "vocab_size": 256000
28
+ }
eval_results.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.999247554552295,
3
+ "eval_logits/chosen": -0.2070515751838684,
4
+ "eval_logits/rejected": 0.09358108043670654,
5
+ "eval_logps/chosen": -117.798583984375,
6
+ "eval_logps/rejected": -908.2842407226562,
7
+ "eval_loss": 0.04265851154923439,
8
+ "eval_rewards/accuracies": 1.0,
9
+ "eval_rewards/chosen": -0.013141422532498837,
10
+ "eval_rewards/margins": 7.185807228088379,
11
+ "eval_rewards/rejected": -7.198948383331299,
12
+ "eval_runtime": 193.1837,
13
+ "eval_samples": 546,
14
+ "eval_samples_per_second": 2.826,
15
+ "eval_steps_per_second": 1.413
16
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 5,
4
+ "eos_token_id": 255001,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.44.2"
7
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4665fc889450bb69011445ca9ba733aa81b5430b2fe50bcdba044d258f15fafe
3
+ size 4915779696
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42aa27b536ef32dd6f59833adc9ecf5df0ce9fec65d11f1ea27de05c8e7e1cc
3
+ size 4915824704
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bec9c953e58552d11021954432150d2b1a39c0814b27f855370d700e005ec19a
3
+ size 4999719592
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5b6dbdd717dda40d6b9486ca7d48ccfe0b354e8e225b4088d8619913afc7673
3
+ size 1224771944
model.safetensors.index.json ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16056066048
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
24
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
80
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
88
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
89
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
104
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
105
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
106
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
107
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
111
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
184
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
185
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
186
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
192
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
200
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
201
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
202
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
203
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
204
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
205
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
206
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
207
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
208
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
209
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
210
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
211
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
212
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
213
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
214
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
215
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
232
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
234
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
263
+ "model.norm.weight": "model-00004-of-00004.safetensors"
264
+ }
265
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<BOS_TOKEN>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|END_OF_TURN_TOKEN|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<PAD>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c69a7ea6c0927dfac8c349186ebcf0466a4723c21cbdb2e850cf559f0bee92b8
3
+ size 12777433
tokenizer_config.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<PAD>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<UNK>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<CLS>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<SEP>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<MASK_TOKEN>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<BOS_TOKEN>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<EOS_TOKEN>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<EOP_TOKEN>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "255000": {
71
+ "content": "<|START_OF_TURN_TOKEN|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "255001": {
79
+ "content": "<|END_OF_TURN_TOKEN|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "255002": {
87
+ "content": "<|YES_TOKEN|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "255003": {
95
+ "content": "<|NO_TOKEN|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "255004": {
103
+ "content": "<|GOOD_TOKEN|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "255005": {
111
+ "content": "<|BAD_TOKEN|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "255006": {
119
+ "content": "<|USER_TOKEN|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "255007": {
127
+ "content": "<|CHATBOT_TOKEN|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "255008": {
135
+ "content": "<|SYSTEM_TOKEN|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "255009": {
143
+ "content": "<|USER_0_TOKEN|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "255010": {
151
+ "content": "<|USER_1_TOKEN|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "255011": {
159
+ "content": "<|USER_2_TOKEN|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "255012": {
167
+ "content": "<|USER_3_TOKEN|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "255013": {
175
+ "content": "<|USER_4_TOKEN|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "255014": {
183
+ "content": "<|USER_5_TOKEN|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "255015": {
191
+ "content": "<|USER_6_TOKEN|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "255016": {
199
+ "content": "<|USER_7_TOKEN|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "255017": {
207
+ "content": "<|USER_8_TOKEN|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "255018": {
215
+ "content": "<|USER_9_TOKEN|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "255019": {
223
+ "content": "<|EXTRA_0_TOKEN|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": false
229
+ },
230
+ "255020": {
231
+ "content": "<|EXTRA_1_TOKEN|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": false
237
+ },
238
+ "255021": {
239
+ "content": "<|EXTRA_2_TOKEN|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": false
245
+ },
246
+ "255022": {
247
+ "content": "<|EXTRA_3_TOKEN|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": false
253
+ },
254
+ "255023": {
255
+ "content": "<|EXTRA_4_TOKEN|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": false
261
+ },
262
+ "255024": {
263
+ "content": "<|EXTRA_5_TOKEN|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": false
269
+ },
270
+ "255025": {
271
+ "content": "<|EXTRA_6_TOKEN|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": false
277
+ },
278
+ "255026": {
279
+ "content": "<|EXTRA_7_TOKEN|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": false
285
+ },
286
+ "255027": {
287
+ "content": "<|EXTRA_8_TOKEN|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": false
293
+ },
294
+ "255028": {
295
+ "content": "<|EXTRA_9_TOKEN|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": false
301
+ }
302
+ },
303
+ "bos_token": "<BOS_TOKEN>",
304
+ "chat_template": [
305
+ {
306
+ "name": "default",
307
+ "template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
308
+ },
309
+ {
310
+ "name": "tool_use",
311
+ "template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '## Task and Context\\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user\\'s needs as best you can, which will be wide-ranging.\\n\\n## Style Guide\\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.' %}{% endif %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ '# Safety Preamble' }}{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}{{ '\n\n# System Preamble' }}{{ '\n## Basic Rules' }}{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}{{ '\n\n# User Preamble' }}{{ '\n' + system_message }}{{'\n\n## Available Tools\nHere is a list of tools that you have available to you:\n\n'}}{% for tool in tools %}{% if loop.index0 != 0 %}{{ '\n\n'}}{% endif %}{{'```python\ndef ' + tool.name + '('}}{% for param_name, param_fields in tool.parameter_definitions.items() %}{% if loop.index0 != 0 %}{{ ', '}}{% endif %}{{param_name}}: {% if not param_fields.required %}{{'Optional[' + param_fields.type + '] = None'}}{% else %}{{ param_fields.type }}{% endif %}{% endfor %}{{ ') -> List[Dict]:\n \"\"\"'}}{{ tool.description }}{% if tool.parameter_definitions|length != 0 %}{{ '\n\n Args:\n '}}{% for param_name, param_fields in tool.parameter_definitions.items() %}{% if loop.index0 != 0 %}{{ '\n ' }}{% endif %}{{ param_name + ' ('}}{% if not param_fields.required %}{{'Optional[' + param_fields.type + ']'}}{% else %}{{ param_fields.type }}{% endif %}{{ '): ' + param_fields.description }}{% endfor %}{% endif %}{{ '\n \"\"\"\n pass\n```' }}{% endfor %}{{ '<|END_OF_TURN_TOKEN|>'}}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{{'<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write \\'Action:\\' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user\\'s last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:\n```json\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]```<|END_OF_TURN_TOKEN|>'}}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
312
+ },
313
+ {
314
+ "name": "rag",
315
+ "template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '## Task and Context\\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user\\'s needs as best you can, which will be wide-ranging.\\n\\n## Style Guide\\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.' %}{% endif %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ '# Safety Preamble' }}{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}{{ '\n\n# System Preamble' }}{{ '\n## Basic Rules' }}{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}{{ '\n\n# User Preamble' }}{{ '\n' + system_message }}{{ '<|END_OF_TURN_TOKEN|>'}}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>'}}{{ '<results>' }}{% for document in documents %}{{ '\nDocument: ' }}{{ loop.index0 }}\n{% for key, value in document.items() %}{{ key }}: {{value}}\n{% endfor %}{% endfor %}{{ '</results>'}}{{ '<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ 'Carefully perform the following instructions, in order, starting each with a new line.\n' }}{{ 'Firstly, Decide which of the retrieved documents are relevant to the user\\'s last input by writing \\'Relevant Documents:\\' followed by comma-separated list of document numbers. If none are relevant, you should instead write \\'None\\'.\n' }}{{ 'Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user\\'s last input by writing \\'Cited Documents:\\' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write \\'None\\'.\n' }}{% if citation_mode=='accurate' %}{{ 'Thirdly, Write \\'Answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.\n' }}{% endif %}{{ 'Finally, Write \\'Grounded answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.' }}{{ '<|END_OF_TURN_TOKEN|>' }}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
316
+ }
317
+ ],
318
+ "clean_up_tokenization_spaces": false,
319
+ "eos_token": "<|END_OF_TURN_TOKEN|>",
320
+ "legacy": true,
321
+ "merges_file": null,
322
+ "model_max_length": 2048,
323
+ "pad_token": "<PAD>",
324
+ "sp_model_kwargs": {},
325
+ "spaces_between_special_tokens": false,
326
+ "tokenizer_class": "CohereTokenizer",
327
+ "unk_token": null,
328
+ "use_default_system_prompt": false,
329
+ "vocab_file": null
330
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.999247554552295,
3
+ "total_flos": 0.0,
4
+ "train_loss": 0.01645123219139964,
5
+ "train_runtime": 7014.6347,
6
+ "train_samples": 2657,
7
+ "train_samples_per_second": 0.758,
8
+ "train_steps_per_second": 0.024
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.999247554552295,
5
+ "eval_steps": 30,
6
+ "global_step": 166,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012039127163280662,
13
+ "grad_norm": 11.953282356262207,
14
+ "learning_rate": 5.555555555555555e-08,
15
+ "logits/chosen": -0.48816660046577454,
16
+ "logits/rejected": -0.42142170667648315,
17
+ "logps/chosen": -117.26611328125,
18
+ "logps/rejected": -125.41987609863281,
19
+ "loss": 0.6931,
20
+ "rewards/accuracies": 0.0,
21
+ "rewards/chosen": 0.0,
22
+ "rewards/margins": 0.0,
23
+ "rewards/rejected": 0.0,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.06019563581640331,
28
+ "grad_norm": 16.68506622314453,
29
+ "learning_rate": 2.7777777777777776e-07,
30
+ "logits/chosen": -0.46595269441604614,
31
+ "logits/rejected": -0.356529176235199,
32
+ "logps/chosen": -190.95057678222656,
33
+ "logps/rejected": -211.25076293945312,
34
+ "loss": 0.6926,
35
+ "rewards/accuracies": 0.453125,
36
+ "rewards/chosen": 0.0007588082225993276,
37
+ "rewards/margins": 0.0022044419310986996,
38
+ "rewards/rejected": -0.0014456338249146938,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.12039127163280662,
43
+ "grad_norm": 13.722668647766113,
44
+ "learning_rate": 4.999499509357132e-07,
45
+ "logits/chosen": -0.4793759286403656,
46
+ "logits/rejected": -0.37052756547927856,
47
+ "logps/chosen": -155.6678009033203,
48
+ "logps/rejected": -199.44947814941406,
49
+ "loss": 0.6889,
50
+ "rewards/accuracies": 0.8125,
51
+ "rewards/chosen": 0.005186144262552261,
52
+ "rewards/margins": 0.009383995085954666,
53
+ "rewards/rejected": -0.004197851754724979,
54
+ "step": 10
55
+ },
56
+ {
57
+ "epoch": 0.18058690744920994,
58
+ "grad_norm": 12.493337631225586,
59
+ "learning_rate": 4.982003369106287e-07,
60
+ "logits/chosen": -0.49185729026794434,
61
+ "logits/rejected": -0.37670475244522095,
62
+ "logps/chosen": -76.30625915527344,
63
+ "logps/rejected": -177.40817260742188,
64
+ "loss": 0.6691,
65
+ "rewards/accuracies": 1.0,
66
+ "rewards/chosen": 0.028129320591688156,
67
+ "rewards/margins": 0.048517487943172455,
68
+ "rewards/rejected": -0.020388163626194,
69
+ "step": 15
70
+ },
71
+ {
72
+ "epoch": 0.24078254326561324,
73
+ "grad_norm": 11.79749870300293,
74
+ "learning_rate": 4.939682729058838e-07,
75
+ "logits/chosen": -0.45126277208328247,
76
+ "logits/rejected": -0.3729521930217743,
77
+ "logps/chosen": -166.20733642578125,
78
+ "logps/rejected": -207.5035400390625,
79
+ "loss": 0.6249,
80
+ "rewards/accuracies": 1.0,
81
+ "rewards/chosen": 0.08626963198184967,
82
+ "rewards/margins": 0.14315639436244965,
83
+ "rewards/rejected": -0.05688678100705147,
84
+ "step": 20
85
+ },
86
+ {
87
+ "epoch": 0.3009781790820166,
88
+ "grad_norm": 10.574383735656738,
89
+ "learning_rate": 4.872960871766826e-07,
90
+ "logits/chosen": -0.4710594713687897,
91
+ "logits/rejected": -0.3694532513618469,
92
+ "logps/chosen": -86.93299865722656,
93
+ "logps/rejected": -186.15248107910156,
94
+ "loss": 0.587,
95
+ "rewards/accuracies": 1.0,
96
+ "rewards/chosen": 0.12460210174322128,
97
+ "rewards/margins": 0.23137669265270233,
98
+ "rewards/rejected": -0.10677458345890045,
99
+ "step": 25
100
+ },
101
+ {
102
+ "epoch": 0.3611738148984199,
103
+ "grad_norm": 11.093204498291016,
104
+ "learning_rate": 4.782505135862175e-07,
105
+ "logits/chosen": -0.45945605635643005,
106
+ "logits/rejected": -0.33354875445365906,
107
+ "logps/chosen": -71.20188903808594,
108
+ "logps/rejected": -212.95767211914062,
109
+ "loss": 0.5229,
110
+ "rewards/accuracies": 1.0,
111
+ "rewards/chosen": 0.16831260919570923,
112
+ "rewards/margins": 0.38181251287460327,
113
+ "rewards/rejected": -0.21349990367889404,
114
+ "step": 30
115
+ },
116
+ {
117
+ "epoch": 0.3611738148984199,
118
+ "eval_logits/chosen": -0.4618959426879883,
119
+ "eval_logits/rejected": -0.3433874249458313,
120
+ "eval_logps/chosen": -98.28858947753906,
121
+ "eval_logps/rejected": -212.0100555419922,
122
+ "eval_loss": 0.5059286952018738,
123
+ "eval_rewards/accuracies": 1.0,
124
+ "eval_rewards/chosen": 0.18195854127407074,
125
+ "eval_rewards/margins": 0.4181654751300812,
126
+ "eval_rewards/rejected": -0.23620688915252686,
127
+ "eval_runtime": 179.4182,
128
+ "eval_samples_per_second": 3.043,
129
+ "eval_steps_per_second": 1.522,
130
+ "step": 30
131
+ },
132
+ {
133
+ "epoch": 0.4213694507148232,
134
+ "grad_norm": 9.376220703125,
135
+ "learning_rate": 4.6692202414695724e-07,
136
+ "logits/chosen": -0.4632042944431305,
137
+ "logits/rejected": -0.35029542446136475,
138
+ "logps/chosen": -84.06396484375,
139
+ "logps/rejected": -213.848388671875,
140
+ "loss": 0.4976,
141
+ "rewards/accuracies": 1.0,
142
+ "rewards/chosen": 0.2034817487001419,
143
+ "rewards/margins": 0.4632874131202698,
144
+ "rewards/rejected": -0.25980567932128906,
145
+ "step": 35
146
+ },
147
+ {
148
+ "epoch": 0.4815650865312265,
149
+ "grad_norm": 8.679346084594727,
150
+ "learning_rate": 4.534239241377266e-07,
151
+ "logits/chosen": -0.44362330436706543,
152
+ "logits/rejected": -0.2992916703224182,
153
+ "logps/chosen": -105.2283706665039,
154
+ "logps/rejected": -244.84890747070312,
155
+ "loss": 0.4197,
156
+ "rewards/accuracies": 1.0,
157
+ "rewards/chosen": 0.22778573632240295,
158
+ "rewards/margins": 0.6910415291786194,
159
+ "rewards/rejected": -0.46325573325157166,
160
+ "step": 40
161
+ },
162
+ {
163
+ "epoch": 0.5417607223476298,
164
+ "grad_norm": 7.219143867492676,
165
+ "learning_rate": 4.3789121884703727e-07,
166
+ "logits/chosen": -0.41270333528518677,
167
+ "logits/rejected": -0.27924439311027527,
168
+ "logps/chosen": -70.08865356445312,
169
+ "logps/rejected": -261.56170654296875,
170
+ "loss": 0.3621,
171
+ "rewards/accuracies": 1.0,
172
+ "rewards/chosen": 0.23598209023475647,
173
+ "rewards/margins": 0.9187321662902832,
174
+ "rewards/rejected": -0.6827500462532043,
175
+ "step": 45
176
+ },
177
+ {
178
+ "epoch": 0.6019563581640331,
179
+ "grad_norm": 6.640863418579102,
180
+ "learning_rate": 4.204792632772754e-07,
181
+ "logits/chosen": -0.4174782633781433,
182
+ "logits/rejected": -0.2659801244735718,
183
+ "logps/chosen": -109.1211166381836,
184
+ "logps/rejected": -280.77813720703125,
185
+ "loss": 0.3123,
186
+ "rewards/accuracies": 1.0,
187
+ "rewards/chosen": 0.2913265824317932,
188
+ "rewards/margins": 1.1760694980621338,
189
+ "rewards/rejected": -0.8847430348396301,
190
+ "step": 50
191
+ },
192
+ {
193
+ "epoch": 0.6621519939804364,
194
+ "grad_norm": 5.293730735778809,
195
+ "learning_rate": 4.01362208315132e-07,
196
+ "logits/chosen": -0.4078051447868347,
197
+ "logits/rejected": -0.25378990173339844,
198
+ "logps/chosen": -116.1395492553711,
199
+ "logps/rejected": -301.702392578125,
200
+ "loss": 0.2619,
201
+ "rewards/accuracies": 1.0,
202
+ "rewards/chosen": 0.3083065152168274,
203
+ "rewards/margins": 1.4346027374267578,
204
+ "rewards/rejected": -1.1262962818145752,
205
+ "step": 55
206
+ },
207
+ {
208
+ "epoch": 0.7223476297968398,
209
+ "grad_norm": 4.923187255859375,
210
+ "learning_rate": 3.807312589093701e-07,
211
+ "logits/chosen": -0.4022981524467468,
212
+ "logits/rejected": -0.2537968158721924,
213
+ "logps/chosen": -103.5102310180664,
214
+ "logps/rejected": -326.17486572265625,
215
+ "loss": 0.2411,
216
+ "rewards/accuracies": 1.0,
217
+ "rewards/chosen": 0.2954918146133423,
218
+ "rewards/margins": 1.6640812158584595,
219
+ "rewards/rejected": -1.3685895204544067,
220
+ "step": 60
221
+ },
222
+ {
223
+ "epoch": 0.7223476297968398,
224
+ "eval_logits/chosen": -0.406698077917099,
225
+ "eval_logits/rejected": -0.23272451758384705,
226
+ "eval_logps/chosen": -88.900146484375,
227
+ "eval_logps/rejected": -330.7860107421875,
228
+ "eval_loss": 0.2134791761636734,
229
+ "eval_rewards/accuracies": 1.0,
230
+ "eval_rewards/chosen": 0.27584296464920044,
231
+ "eval_rewards/margins": 1.699809193611145,
232
+ "eval_rewards/rejected": -1.4239662885665894,
233
+ "eval_runtime": 183.6706,
234
+ "eval_samples_per_second": 2.973,
235
+ "eval_steps_per_second": 1.486,
236
+ "step": 60
237
+ },
238
+ {
239
+ "epoch": 0.782543265613243,
240
+ "grad_norm": 4.418694496154785,
241
+ "learning_rate": 3.5879276167728337e-07,
242
+ "logits/chosen": -0.4011690616607666,
243
+ "logits/rejected": -0.22693100571632385,
244
+ "logps/chosen": -56.017845153808594,
245
+ "logps/rejected": -332.90380859375,
246
+ "loss": 0.1992,
247
+ "rewards/accuracies": 1.0,
248
+ "rewards/chosen": 0.2577177882194519,
249
+ "rewards/margins": 1.7556695938110352,
250
+ "rewards/rejected": -1.497951865196228,
251
+ "step": 65
252
+ },
253
+ {
254
+ "epoch": 0.8427389014296464,
255
+ "grad_norm": 3.794067859649658,
256
+ "learning_rate": 3.357661410672247e-07,
257
+ "logits/chosen": -0.33221831917762756,
258
+ "logits/rejected": -0.1342475712299347,
259
+ "logps/chosen": -74.8525619506836,
260
+ "logps/rejected": -393.6372985839844,
261
+ "loss": 0.1573,
262
+ "rewards/accuracies": 1.0,
263
+ "rewards/chosen": 0.25318774580955505,
264
+ "rewards/margins": 2.2917141914367676,
265
+ "rewards/rejected": -2.0385265350341797,
266
+ "step": 70
267
+ },
268
+ {
269
+ "epoch": 0.9029345372460497,
270
+ "grad_norm": 3.2060582637786865,
271
+ "learning_rate": 3.1188170471929064e-07,
272
+ "logits/chosen": -0.2731170058250427,
273
+ "logits/rejected": -0.10557065159082413,
274
+ "logps/chosen": -161.33474731445312,
275
+ "logps/rejected": -437.1578063964844,
276
+ "loss": 0.1191,
277
+ "rewards/accuracies": 1.0,
278
+ "rewards/chosen": 0.2284388542175293,
279
+ "rewards/margins": 2.7684743404388428,
280
+ "rewards/rejected": -2.5400352478027344,
281
+ "step": 75
282
+ },
283
+ {
284
+ "epoch": 0.963130173062453,
285
+ "grad_norm": 1.8243048191070557,
286
+ "learning_rate": 2.8737833997450657e-07,
287
+ "logits/chosen": -0.2729615569114685,
288
+ "logits/rejected": -0.0838087797164917,
289
+ "logps/chosen": -80.7784423828125,
290
+ "logps/rejected": -492.26080322265625,
291
+ "loss": 0.0926,
292
+ "rewards/accuracies": 1.0,
293
+ "rewards/chosen": 0.21951308846473694,
294
+ "rewards/margins": 3.2957847118377686,
295
+ "rewards/rejected": -3.0762715339660645,
296
+ "step": 80
297
+ },
298
+ {
299
+ "epoch": 1.0233258088788564,
300
+ "grad_norm": 1.6663548946380615,
301
+ "learning_rate": 2.6250112457156293e-07,
302
+ "logits/chosen": -0.2614014744758606,
303
+ "logits/rejected": -0.06510574370622635,
304
+ "logps/chosen": -87.82209777832031,
305
+ "logps/rejected": -556.6070556640625,
306
+ "loss": 0.0775,
307
+ "rewards/accuracies": 1.0,
308
+ "rewards/chosen": 0.1841917783021927,
309
+ "rewards/margins": 3.8404979705810547,
310
+ "rewards/rejected": -3.656306028366089,
311
+ "step": 85
312
+ },
313
+ {
314
+ "epoch": 1.0835214446952597,
315
+ "grad_norm": 1.4261465072631836,
316
+ "learning_rate": 2.3749887542843707e-07,
317
+ "logits/chosen": -0.26909708976745605,
318
+ "logits/rejected": -0.0703195109963417,
319
+ "logps/chosen": -100.4935531616211,
320
+ "logps/rejected": -598.0264892578125,
321
+ "loss": 0.0634,
322
+ "rewards/accuracies": 1.0,
323
+ "rewards/chosen": 0.16738824546337128,
324
+ "rewards/margins": 4.255741119384766,
325
+ "rewards/rejected": -4.088352680206299,
326
+ "step": 90
327
+ },
328
+ {
329
+ "epoch": 1.0835214446952597,
330
+ "eval_logits/chosen": -0.25795042514801025,
331
+ "eval_logits/rejected": -0.035701148211956024,
332
+ "eval_logps/chosen": -99.51206970214844,
333
+ "eval_logps/rejected": -607.3591918945312,
334
+ "eval_loss": 0.07514728605747223,
335
+ "eval_rewards/accuracies": 1.0,
336
+ "eval_rewards/chosen": 0.16972379386425018,
337
+ "eval_rewards/margins": 4.359421730041504,
338
+ "eval_rewards/rejected": -4.189698219299316,
339
+ "eval_runtime": 184.8502,
340
+ "eval_samples_per_second": 2.954,
341
+ "eval_steps_per_second": 1.477,
342
+ "step": 90
343
+ },
344
+ {
345
+ "epoch": 1.143717080511663,
346
+ "grad_norm": 1.3145774602890015,
347
+ "learning_rate": 2.126216600254934e-07,
348
+ "logits/chosen": -0.2394520789384842,
349
+ "logits/rejected": -0.023534994572401047,
350
+ "logps/chosen": -150.5535888671875,
351
+ "logps/rejected": -699.5059814453125,
352
+ "loss": 0.0605,
353
+ "rewards/accuracies": 1.0,
354
+ "rewards/chosen": 0.09343000501394272,
355
+ "rewards/margins": 5.061221122741699,
356
+ "rewards/rejected": -4.967791557312012,
357
+ "step": 95
358
+ },
359
+ {
360
+ "epoch": 1.2039127163280663,
361
+ "grad_norm": 0.628934919834137,
362
+ "learning_rate": 1.8811829528070931e-07,
363
+ "logits/chosen": -0.2859761714935303,
364
+ "logits/rejected": -0.027079975232481956,
365
+ "logps/chosen": -72.18778991699219,
366
+ "logps/rejected": -737.0675048828125,
367
+ "loss": 0.0489,
368
+ "rewards/accuracies": 1.0,
369
+ "rewards/chosen": 0.1680155098438263,
370
+ "rewards/margins": 5.535449028015137,
371
+ "rewards/rejected": -5.367433547973633,
372
+ "step": 100
373
+ },
374
+ {
375
+ "epoch": 1.2648607975921746,
376
+ "grad_norm": 0.8070765733718872,
377
+ "learning_rate": 1.6423385893277537e-07,
378
+ "logits/chosen": -0.24801869690418243,
379
+ "logits/rejected": -0.014291681349277496,
380
+ "logps/chosen": -109.48841857910156,
381
+ "logps/rejected": -681.1419677734375,
382
+ "loss": 0.0476,
383
+ "rewards/accuracies": 1.0,
384
+ "rewards/chosen": 0.09798868745565414,
385
+ "rewards/margins": 5.150273323059082,
386
+ "rewards/rejected": -5.052285194396973,
387
+ "step": 105
388
+ },
389
+ {
390
+ "epoch": 1.325056433408578,
391
+ "grad_norm": 0.6888783574104309,
392
+ "learning_rate": 1.4120723832271663e-07,
393
+ "logits/chosen": -0.23577141761779785,
394
+ "logits/rejected": -0.011897795833647251,
395
+ "logps/chosen": -120.05766296386719,
396
+ "logps/rejected": -731.9443969726562,
397
+ "loss": 0.054,
398
+ "rewards/accuracies": 1.0,
399
+ "rewards/chosen": 0.07691726088523865,
400
+ "rewards/margins": 5.525856018066406,
401
+ "rewards/rejected": -5.448939323425293,
402
+ "step": 110
403
+ },
404
+ {
405
+ "epoch": 1.3852520692249812,
406
+ "grad_norm": 0.6200137734413147,
407
+ "learning_rate": 1.1926874109062998e-07,
408
+ "logits/chosen": -0.2343941181898117,
409
+ "logits/rejected": 0.012432652525603771,
410
+ "logps/chosen": -131.77175903320312,
411
+ "logps/rejected": -745.412841796875,
412
+ "loss": 0.0496,
413
+ "rewards/accuracies": 1.0,
414
+ "rewards/chosen": 0.02012884058058262,
415
+ "rewards/margins": 5.680893898010254,
416
+ "rewards/rejected": -5.660765171051025,
417
+ "step": 115
418
+ },
419
+ {
420
+ "epoch": 1.4454477050413845,
421
+ "grad_norm": 0.5668838620185852,
422
+ "learning_rate": 9.863779168486797e-08,
423
+ "logits/chosen": -0.22034311294555664,
424
+ "logits/rejected": 0.03210270777344704,
425
+ "logps/chosen": -115.6126708984375,
426
+ "logps/rejected": -790.9016723632812,
427
+ "loss": 0.0452,
428
+ "rewards/accuracies": 1.0,
429
+ "rewards/chosen": 0.053596943616867065,
430
+ "rewards/margins": 6.07260799407959,
431
+ "rewards/rejected": -6.0190110206604,
432
+ "step": 120
433
+ },
434
+ {
435
+ "epoch": 1.4454477050413845,
436
+ "eval_logits/chosen": -0.2345404177904129,
437
+ "eval_logits/rejected": 0.038044609129428864,
438
+ "eval_logps/chosen": -108.91590881347656,
439
+ "eval_logps/rejected": -782.349365234375,
440
+ "eval_loss": 0.05323062837123871,
441
+ "eval_rewards/accuracies": 1.0,
442
+ "eval_rewards/chosen": 0.07568521797657013,
443
+ "eval_rewards/margins": 6.015285491943359,
444
+ "eval_rewards/rejected": -5.939600467681885,
445
+ "eval_runtime": 191.5149,
446
+ "eval_samples_per_second": 2.851,
447
+ "eval_steps_per_second": 1.425,
448
+ "step": 120
449
+ },
450
+ {
451
+ "epoch": 1.5056433408577878,
452
+ "grad_norm": 0.7317198514938354,
453
+ "learning_rate": 7.952073672272464e-08,
454
+ "logits/chosen": -0.21637864410877228,
455
+ "logits/rejected": 0.0313236340880394,
456
+ "logps/chosen": -126.0725326538086,
457
+ "logps/rejected": -756.0071411132812,
458
+ "loss": 0.0492,
459
+ "rewards/accuracies": 1.0,
460
+ "rewards/chosen": -0.008594411425292492,
461
+ "rewards/margins": 5.820641994476318,
462
+ "rewards/rejected": -5.82923698425293,
463
+ "step": 125
464
+ },
465
+ {
466
+ "epoch": 1.5658389766741911,
467
+ "grad_norm": 0.5411990284919739,
468
+ "learning_rate": 6.210878115296267e-08,
469
+ "logits/chosen": -0.2258405238389969,
470
+ "logits/rejected": 0.026202013716101646,
471
+ "logps/chosen": -144.01856994628906,
472
+ "logps/rejected": -760.4769287109375,
473
+ "loss": 0.029,
474
+ "rewards/accuracies": 1.0,
475
+ "rewards/chosen": -0.01425357349216938,
476
+ "rewards/margins": 5.899747371673584,
477
+ "rewards/rejected": -5.91400146484375,
478
+ "step": 130
479
+ },
480
+ {
481
+ "epoch": 1.6260346124905944,
482
+ "grad_norm": 0.30838528275489807,
483
+ "learning_rate": 4.657607586227344e-08,
484
+ "logits/chosen": -0.23345847427845,
485
+ "logits/rejected": 0.027966421097517014,
486
+ "logps/chosen": -124.6040267944336,
487
+ "logps/rejected": -917.08349609375,
488
+ "loss": 0.036,
489
+ "rewards/accuracies": 1.0,
490
+ "rewards/chosen": 0.0217633955180645,
491
+ "rewards/margins": 7.151785850524902,
492
+ "rewards/rejected": -7.1300225257873535,
493
+ "step": 135
494
+ },
495
+ {
496
+ "epoch": 1.6862302483069977,
497
+ "grad_norm": 1.47968590259552,
498
+ "learning_rate": 3.30779758530427e-08,
499
+ "logits/chosen": -0.2245132029056549,
500
+ "logits/rejected": 0.047028228640556335,
501
+ "logps/chosen": -118.25953674316406,
502
+ "logps/rejected": -851.4835205078125,
503
+ "loss": 0.0516,
504
+ "rewards/accuracies": 0.987500011920929,
505
+ "rewards/chosen": -0.0352528840303421,
506
+ "rewards/margins": 6.62514591217041,
507
+ "rewards/rejected": -6.660399436950684,
508
+ "step": 140
509
+ },
510
+ {
511
+ "epoch": 1.746425884123401,
512
+ "grad_norm": 0.5548922419548035,
513
+ "learning_rate": 2.1749486413782435e-08,
514
+ "logits/chosen": -0.21600095927715302,
515
+ "logits/rejected": 0.06509985029697418,
516
+ "logps/chosen": -140.62574768066406,
517
+ "logps/rejected": -936.2386474609375,
518
+ "loss": 0.0312,
519
+ "rewards/accuracies": 1.0,
520
+ "rewards/chosen": -0.07837997376918793,
521
+ "rewards/margins": 7.2990617752075195,
522
+ "rewards/rejected": -7.37744140625,
523
+ "step": 145
524
+ },
525
+ {
526
+ "epoch": 1.8066215199398044,
527
+ "grad_norm": 0.5003569722175598,
528
+ "learning_rate": 1.2703912823317397e-08,
529
+ "logits/chosen": -0.20677892863750458,
530
+ "logits/rejected": 0.06903555244207382,
531
+ "logps/chosen": -150.6492919921875,
532
+ "logps/rejected": -826.0875244140625,
533
+ "loss": 0.0307,
534
+ "rewards/accuracies": 1.0,
535
+ "rewards/chosen": -0.09083503484725952,
536
+ "rewards/margins": 6.384757995605469,
537
+ "rewards/rejected": -6.475593566894531,
538
+ "step": 150
539
+ },
540
+ {
541
+ "epoch": 1.8066215199398044,
542
+ "eval_logits/chosen": -0.230697363615036,
543
+ "eval_logits/rejected": 0.079569511115551,
544
+ "eval_logps/chosen": -114.66878509521484,
545
+ "eval_logps/rejected": -867.22607421875,
546
+ "eval_loss": 0.045937325805425644,
547
+ "eval_rewards/accuracies": 1.0,
548
+ "eval_rewards/chosen": 0.018156491219997406,
549
+ "eval_rewards/margins": 6.806523323059082,
550
+ "eval_rewards/rejected": -6.78836727142334,
551
+ "eval_runtime": 193.7203,
552
+ "eval_samples_per_second": 2.818,
553
+ "eval_steps_per_second": 1.409,
554
+ "step": 150
555
+ },
556
+ {
557
+ "epoch": 1.8668171557562077,
558
+ "grad_norm": 0.303206205368042,
559
+ "learning_rate": 6.031727094116174e-09,
560
+ "logits/chosen": -0.22335031628608704,
561
+ "logits/rejected": 0.0749906450510025,
562
+ "logps/chosen": -178.22097778320312,
563
+ "logps/rejected": -1008.4031372070312,
564
+ "loss": 0.0311,
565
+ "rewards/accuracies": 1.0,
566
+ "rewards/chosen": -0.15972693264484406,
567
+ "rewards/margins": 7.850977420806885,
568
+ "rewards/rejected": -8.01070499420166,
569
+ "step": 155
570
+ },
571
+ {
572
+ "epoch": 1.927012791572611,
573
+ "grad_norm": 0.5809817910194397,
574
+ "learning_rate": 1.7996630893712671e-09,
575
+ "logits/chosen": -0.20071235299110413,
576
+ "logits/rejected": 0.08598125725984573,
577
+ "logps/chosen": -156.4674530029297,
578
+ "logps/rejected": -796.1658325195312,
579
+ "loss": 0.0451,
580
+ "rewards/accuracies": 1.0,
581
+ "rewards/chosen": -0.11812801659107208,
582
+ "rewards/margins": 6.20440673828125,
583
+ "rewards/rejected": -6.322534084320068,
584
+ "step": 160
585
+ },
586
+ {
587
+ "epoch": 1.9872084273890143,
588
+ "grad_norm": 0.5935037732124329,
589
+ "learning_rate": 5.0049064286850074e-11,
590
+ "logits/chosen": -0.20801086723804474,
591
+ "logits/rejected": 0.09084095805883408,
592
+ "logps/chosen": -133.05039978027344,
593
+ "logps/rejected": -858.1156005859375,
594
+ "loss": 0.0449,
595
+ "rewards/accuracies": 1.0,
596
+ "rewards/chosen": -0.057532183825969696,
597
+ "rewards/margins": 6.773335933685303,
598
+ "rewards/rejected": -6.830867767333984,
599
+ "step": 165
600
+ },
601
+ {
602
+ "epoch": 1.999247554552295,
603
+ "step": 166,
604
+ "total_flos": 0.0,
605
+ "train_loss": 0.01645123219139964,
606
+ "train_runtime": 7014.6347,
607
+ "train_samples_per_second": 0.758,
608
+ "train_steps_per_second": 0.024
609
+ }
610
+ ],
611
+ "logging_steps": 5,
612
+ "max_steps": 166,
613
+ "num_input_tokens_seen": 0,
614
+ "num_train_epochs": 2,
615
+ "save_steps": 50,
616
+ "stateful_callbacks": {
617
+ "TrainerControl": {
618
+ "args": {
619
+ "should_epoch_stop": false,
620
+ "should_evaluate": false,
621
+ "should_log": false,
622
+ "should_save": true,
623
+ "should_training_stop": true
624
+ },
625
+ "attributes": {}
626
+ }
627
+ },
628
+ "total_flos": 0.0,
629
+ "train_batch_size": 1,
630
+ "trial_name": null,
631
+ "trial_params": null
632
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5180ea7aa0803ccae3d36718535d613b9b90d878e587e68a6715443f666f6438
3
+ size 7480