Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +79 -0
- all_results.json +22 -0
- config.json +28 -0
- eval_results.json +16 -0
- generation_config.json +7 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +265 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +330 -0
- train_results.json +9 -0
- trainer_state.json +632 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: CohereForAI/aya-23-8B
|
5 |
+
tags:
|
6 |
+
- alignment-handbook
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- simonycl/aya-23-8B_advprompter_jailbreak
|
10 |
+
model-index:
|
11 |
+
- name: aya-advprompter
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# aya-advprompter
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [CohereForAI/aya-23-8B](https://huggingface.co/CohereForAI/aya-23-8B) on the simonycl/aya-23-8B_advprompter_jailbreak dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0459
|
23 |
+
- Rewards/chosen: 0.0182
|
24 |
+
- Rewards/rejected: -6.7884
|
25 |
+
- Rewards/accuracies: 1.0
|
26 |
+
- Rewards/margins: 6.8065
|
27 |
+
- Logps/rejected: -867.2261
|
28 |
+
- Logps/chosen: -114.6688
|
29 |
+
- Logits/rejected: 0.0796
|
30 |
+
- Logits/chosen: -0.2307
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 5e-07
|
50 |
+
- train_batch_size: 1
|
51 |
+
- eval_batch_size: 1
|
52 |
+
- seed: 42
|
53 |
+
- distributed_type: multi-GPU
|
54 |
+
- num_devices: 2
|
55 |
+
- gradient_accumulation_steps: 16
|
56 |
+
- total_train_batch_size: 32
|
57 |
+
- total_eval_batch_size: 2
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: cosine
|
60 |
+
- lr_scheduler_warmup_ratio: 0.05
|
61 |
+
- num_epochs: 2
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|
66 |
+
|:-------------:|:------:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
|
67 |
+
| 0.5229 | 0.3612 | 30 | -0.4619 | -0.3434 | -98.2886 | -212.0101 | 0.5059 | 1.0 | 0.1820 | 0.4182 | -0.2362 |
|
68 |
+
| 0.2411 | 0.7223 | 60 | -0.4067 | -0.2327 | -88.9001 | -330.7860 | 0.2135 | 1.0 | 0.2758 | 1.6998 | -1.4240 |
|
69 |
+
| 0.0634 | 1.0835 | 90 | -0.2580 | -0.0357 | -99.5121 | -607.3592 | 0.0751 | 1.0 | 0.1697 | 4.3594 | -4.1897 |
|
70 |
+
| 0.0452 | 1.4454 | 120 | 0.0532 | 0.0757 | -5.9396 | 1.0 | 6.0153 | -782.3494 | -108.9159 | 0.0380 | -0.2345 |
|
71 |
+
| 0.0307 | 1.8066 | 150 | 0.0459 | 0.0182 | -6.7884 | 1.0 | 6.8065 | -867.2261 | -114.6688 | 0.0796 | -0.2307 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.44.2
|
77 |
+
- Pytorch 2.3.0+cu121
|
78 |
+
- Datasets 2.21.0
|
79 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.999247554552295,
|
3 |
+
"eval_logits/chosen": -0.2070515751838684,
|
4 |
+
"eval_logits/rejected": 0.09358108043670654,
|
5 |
+
"eval_logps/chosen": -117.798583984375,
|
6 |
+
"eval_logps/rejected": -908.2842407226562,
|
7 |
+
"eval_loss": 0.04265851154923439,
|
8 |
+
"eval_rewards/accuracies": 1.0,
|
9 |
+
"eval_rewards/chosen": -0.013141422532498837,
|
10 |
+
"eval_rewards/margins": 7.185807228088379,
|
11 |
+
"eval_rewards/rejected": -7.198948383331299,
|
12 |
+
"eval_runtime": 193.1837,
|
13 |
+
"eval_samples": 546,
|
14 |
+
"eval_samples_per_second": 2.826,
|
15 |
+
"eval_steps_per_second": 1.413,
|
16 |
+
"total_flos": 0.0,
|
17 |
+
"train_loss": 0.01645123219139964,
|
18 |
+
"train_runtime": 7014.6347,
|
19 |
+
"train_samples": 2657,
|
20 |
+
"train_samples_per_second": 0.758,
|
21 |
+
"train_steps_per_second": 0.024
|
22 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "CohereForAI/aya-23-8B",
|
3 |
+
"architectures": [
|
4 |
+
"CohereForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 5,
|
9 |
+
"eos_token_id": 255001,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"logit_scale": 0.0625,
|
16 |
+
"max_position_embeddings": 8192,
|
17 |
+
"model_type": "cohere",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"rope_theta": 10000,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.44.2",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_qk_norm": false,
|
27 |
+
"vocab_size": 256000
|
28 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.999247554552295,
|
3 |
+
"eval_logits/chosen": -0.2070515751838684,
|
4 |
+
"eval_logits/rejected": 0.09358108043670654,
|
5 |
+
"eval_logps/chosen": -117.798583984375,
|
6 |
+
"eval_logps/rejected": -908.2842407226562,
|
7 |
+
"eval_loss": 0.04265851154923439,
|
8 |
+
"eval_rewards/accuracies": 1.0,
|
9 |
+
"eval_rewards/chosen": -0.013141422532498837,
|
10 |
+
"eval_rewards/margins": 7.185807228088379,
|
11 |
+
"eval_rewards/rejected": -7.198948383331299,
|
12 |
+
"eval_runtime": 193.1837,
|
13 |
+
"eval_samples": 546,
|
14 |
+
"eval_samples_per_second": 2.826,
|
15 |
+
"eval_steps_per_second": 1.413
|
16 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 5,
|
4 |
+
"eos_token_id": 255001,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.44.2"
|
7 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4665fc889450bb69011445ca9ba733aa81b5430b2fe50bcdba044d258f15fafe
|
3 |
+
size 4915779696
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c42aa27b536ef32dd6f59833adc9ecf5df0ce9fec65d11f1ea27de05c8e7e1cc
|
3 |
+
size 4915824704
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bec9c953e58552d11021954432150d2b1a39c0814b27f855370d700e005ec19a
|
3 |
+
size 4999719592
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5b6dbdd717dda40d6b9486ca7d48ccfe0b354e8e225b4088d8619913afc7673
|
3 |
+
size 1224771944
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16056066048
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
24 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
25 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
26 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
80 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
81 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
88 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
89 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
90 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
91 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
92 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
93 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
94 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
95 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
96 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
97 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
98 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
99 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
100 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
101 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
102 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
103 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
104 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
105 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
106 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
107 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
108 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
109 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
110 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
111 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
113 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
115 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
116 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
122 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
125 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
184 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
185 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
186 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
187 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
192 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
193 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
194 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
195 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
196 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
197 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
198 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
199 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
200 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
201 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
202 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
203 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
204 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
205 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
206 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
207 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
208 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
209 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
210 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
211 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
212 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
213 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
214 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
215 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
225 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
226 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
227 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
228 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
229 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
230 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
231 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
232 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
233 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
234 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
235 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
236 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
237 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
238 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
239 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
240 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
241 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
242 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
243 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
244 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
245 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
246 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
247 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
248 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
249 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
250 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
251 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
252 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
253 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
254 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
255 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
256 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
257 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
258 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
259 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
260 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
261 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
262 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
263 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
264 |
+
}
|
265 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<BOS_TOKEN>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|END_OF_TURN_TOKEN|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<PAD>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c69a7ea6c0927dfac8c349186ebcf0466a4723c21cbdb2e850cf559f0bee92b8
|
3 |
+
size 12777433
|
tokenizer_config.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<PAD>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<UNK>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "<CLS>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"3": {
|
31 |
+
"content": "<SEP>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"4": {
|
39 |
+
"content": "<MASK_TOKEN>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"5": {
|
47 |
+
"content": "<BOS_TOKEN>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"6": {
|
55 |
+
"content": "<EOS_TOKEN>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"7": {
|
63 |
+
"content": "<EOP_TOKEN>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"255000": {
|
71 |
+
"content": "<|START_OF_TURN_TOKEN|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"255001": {
|
79 |
+
"content": "<|END_OF_TURN_TOKEN|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"255002": {
|
87 |
+
"content": "<|YES_TOKEN|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"255003": {
|
95 |
+
"content": "<|NO_TOKEN|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"255004": {
|
103 |
+
"content": "<|GOOD_TOKEN|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"255005": {
|
111 |
+
"content": "<|BAD_TOKEN|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"255006": {
|
119 |
+
"content": "<|USER_TOKEN|>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"255007": {
|
127 |
+
"content": "<|CHATBOT_TOKEN|>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"255008": {
|
135 |
+
"content": "<|SYSTEM_TOKEN|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"255009": {
|
143 |
+
"content": "<|USER_0_TOKEN|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"255010": {
|
151 |
+
"content": "<|USER_1_TOKEN|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"255011": {
|
159 |
+
"content": "<|USER_2_TOKEN|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"255012": {
|
167 |
+
"content": "<|USER_3_TOKEN|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"255013": {
|
175 |
+
"content": "<|USER_4_TOKEN|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"255014": {
|
183 |
+
"content": "<|USER_5_TOKEN|>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"255015": {
|
191 |
+
"content": "<|USER_6_TOKEN|>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"255016": {
|
199 |
+
"content": "<|USER_7_TOKEN|>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": false,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
},
|
206 |
+
"255017": {
|
207 |
+
"content": "<|USER_8_TOKEN|>",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": false,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": false
|
213 |
+
},
|
214 |
+
"255018": {
|
215 |
+
"content": "<|USER_9_TOKEN|>",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": false,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": false
|
221 |
+
},
|
222 |
+
"255019": {
|
223 |
+
"content": "<|EXTRA_0_TOKEN|>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": false,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": false
|
229 |
+
},
|
230 |
+
"255020": {
|
231 |
+
"content": "<|EXTRA_1_TOKEN|>",
|
232 |
+
"lstrip": false,
|
233 |
+
"normalized": false,
|
234 |
+
"rstrip": false,
|
235 |
+
"single_word": false,
|
236 |
+
"special": false
|
237 |
+
},
|
238 |
+
"255021": {
|
239 |
+
"content": "<|EXTRA_2_TOKEN|>",
|
240 |
+
"lstrip": false,
|
241 |
+
"normalized": false,
|
242 |
+
"rstrip": false,
|
243 |
+
"single_word": false,
|
244 |
+
"special": false
|
245 |
+
},
|
246 |
+
"255022": {
|
247 |
+
"content": "<|EXTRA_3_TOKEN|>",
|
248 |
+
"lstrip": false,
|
249 |
+
"normalized": false,
|
250 |
+
"rstrip": false,
|
251 |
+
"single_word": false,
|
252 |
+
"special": false
|
253 |
+
},
|
254 |
+
"255023": {
|
255 |
+
"content": "<|EXTRA_4_TOKEN|>",
|
256 |
+
"lstrip": false,
|
257 |
+
"normalized": false,
|
258 |
+
"rstrip": false,
|
259 |
+
"single_word": false,
|
260 |
+
"special": false
|
261 |
+
},
|
262 |
+
"255024": {
|
263 |
+
"content": "<|EXTRA_5_TOKEN|>",
|
264 |
+
"lstrip": false,
|
265 |
+
"normalized": false,
|
266 |
+
"rstrip": false,
|
267 |
+
"single_word": false,
|
268 |
+
"special": false
|
269 |
+
},
|
270 |
+
"255025": {
|
271 |
+
"content": "<|EXTRA_6_TOKEN|>",
|
272 |
+
"lstrip": false,
|
273 |
+
"normalized": false,
|
274 |
+
"rstrip": false,
|
275 |
+
"single_word": false,
|
276 |
+
"special": false
|
277 |
+
},
|
278 |
+
"255026": {
|
279 |
+
"content": "<|EXTRA_7_TOKEN|>",
|
280 |
+
"lstrip": false,
|
281 |
+
"normalized": false,
|
282 |
+
"rstrip": false,
|
283 |
+
"single_word": false,
|
284 |
+
"special": false
|
285 |
+
},
|
286 |
+
"255027": {
|
287 |
+
"content": "<|EXTRA_8_TOKEN|>",
|
288 |
+
"lstrip": false,
|
289 |
+
"normalized": false,
|
290 |
+
"rstrip": false,
|
291 |
+
"single_word": false,
|
292 |
+
"special": false
|
293 |
+
},
|
294 |
+
"255028": {
|
295 |
+
"content": "<|EXTRA_9_TOKEN|>",
|
296 |
+
"lstrip": false,
|
297 |
+
"normalized": false,
|
298 |
+
"rstrip": false,
|
299 |
+
"single_word": false,
|
300 |
+
"special": false
|
301 |
+
}
|
302 |
+
},
|
303 |
+
"bos_token": "<BOS_TOKEN>",
|
304 |
+
"chat_template": [
|
305 |
+
{
|
306 |
+
"name": "default",
|
307 |
+
"template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"name": "tool_use",
|
311 |
+
"template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '## Task and Context\\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user\\'s needs as best you can, which will be wide-ranging.\\n\\n## Style Guide\\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.' %}{% endif %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ '# Safety Preamble' }}{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}{{ '\n\n# System Preamble' }}{{ '\n## Basic Rules' }}{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}{{ '\n\n# User Preamble' }}{{ '\n' + system_message }}{{'\n\n## Available Tools\nHere is a list of tools that you have available to you:\n\n'}}{% for tool in tools %}{% if loop.index0 != 0 %}{{ '\n\n'}}{% endif %}{{'```python\ndef ' + tool.name + '('}}{% for param_name, param_fields in tool.parameter_definitions.items() %}{% if loop.index0 != 0 %}{{ ', '}}{% endif %}{{param_name}}: {% if not param_fields.required %}{{'Optional[' + param_fields.type + '] = None'}}{% else %}{{ param_fields.type }}{% endif %}{% endfor %}{{ ') -> List[Dict]:\n \"\"\"'}}{{ tool.description }}{% if tool.parameter_definitions|length != 0 %}{{ '\n\n Args:\n '}}{% for param_name, param_fields in tool.parameter_definitions.items() %}{% if loop.index0 != 0 %}{{ '\n ' }}{% endif %}{{ param_name + ' ('}}{% if not param_fields.required %}{{'Optional[' + param_fields.type + ']'}}{% else %}{{ param_fields.type }}{% endif %}{{ '): ' + param_fields.description }}{% endfor %}{% endif %}{{ '\n \"\"\"\n pass\n```' }}{% endfor %}{{ '<|END_OF_TURN_TOKEN|>'}}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{{'<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write \\'Action:\\' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user\\'s last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:\n```json\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]```<|END_OF_TURN_TOKEN|>'}}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"name": "rag",
|
315 |
+
"template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '## Task and Context\\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user\\'s needs as best you can, which will be wide-ranging.\\n\\n## Style Guide\\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.' %}{% endif %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ '# Safety Preamble' }}{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}{{ '\n\n# System Preamble' }}{{ '\n## Basic Rules' }}{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}{{ '\n\n# User Preamble' }}{{ '\n' + system_message }}{{ '<|END_OF_TURN_TOKEN|>'}}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>'}}{{ '<results>' }}{% for document in documents %}{{ '\nDocument: ' }}{{ loop.index0 }}\n{% for key, value in document.items() %}{{ key }}: {{value}}\n{% endfor %}{% endfor %}{{ '</results>'}}{{ '<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ 'Carefully perform the following instructions, in order, starting each with a new line.\n' }}{{ 'Firstly, Decide which of the retrieved documents are relevant to the user\\'s last input by writing \\'Relevant Documents:\\' followed by comma-separated list of document numbers. If none are relevant, you should instead write \\'None\\'.\n' }}{{ 'Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user\\'s last input by writing \\'Cited Documents:\\' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write \\'None\\'.\n' }}{% if citation_mode=='accurate' %}{{ 'Thirdly, Write \\'Answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.\n' }}{% endif %}{{ 'Finally, Write \\'Grounded answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.' }}{{ '<|END_OF_TURN_TOKEN|>' }}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
|
316 |
+
}
|
317 |
+
],
|
318 |
+
"clean_up_tokenization_spaces": false,
|
319 |
+
"eos_token": "<|END_OF_TURN_TOKEN|>",
|
320 |
+
"legacy": true,
|
321 |
+
"merges_file": null,
|
322 |
+
"model_max_length": 2048,
|
323 |
+
"pad_token": "<PAD>",
|
324 |
+
"sp_model_kwargs": {},
|
325 |
+
"spaces_between_special_tokens": false,
|
326 |
+
"tokenizer_class": "CohereTokenizer",
|
327 |
+
"unk_token": null,
|
328 |
+
"use_default_system_prompt": false,
|
329 |
+
"vocab_file": null
|
330 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.999247554552295,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.01645123219139964,
|
5 |
+
"train_runtime": 7014.6347,
|
6 |
+
"train_samples": 2657,
|
7 |
+
"train_samples_per_second": 0.758,
|
8 |
+
"train_steps_per_second": 0.024
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.999247554552295,
|
5 |
+
"eval_steps": 30,
|
6 |
+
"global_step": 166,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.012039127163280662,
|
13 |
+
"grad_norm": 11.953282356262207,
|
14 |
+
"learning_rate": 5.555555555555555e-08,
|
15 |
+
"logits/chosen": -0.48816660046577454,
|
16 |
+
"logits/rejected": -0.42142170667648315,
|
17 |
+
"logps/chosen": -117.26611328125,
|
18 |
+
"logps/rejected": -125.41987609863281,
|
19 |
+
"loss": 0.6931,
|
20 |
+
"rewards/accuracies": 0.0,
|
21 |
+
"rewards/chosen": 0.0,
|
22 |
+
"rewards/margins": 0.0,
|
23 |
+
"rewards/rejected": 0.0,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.06019563581640331,
|
28 |
+
"grad_norm": 16.68506622314453,
|
29 |
+
"learning_rate": 2.7777777777777776e-07,
|
30 |
+
"logits/chosen": -0.46595269441604614,
|
31 |
+
"logits/rejected": -0.356529176235199,
|
32 |
+
"logps/chosen": -190.95057678222656,
|
33 |
+
"logps/rejected": -211.25076293945312,
|
34 |
+
"loss": 0.6926,
|
35 |
+
"rewards/accuracies": 0.453125,
|
36 |
+
"rewards/chosen": 0.0007588082225993276,
|
37 |
+
"rewards/margins": 0.0022044419310986996,
|
38 |
+
"rewards/rejected": -0.0014456338249146938,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.12039127163280662,
|
43 |
+
"grad_norm": 13.722668647766113,
|
44 |
+
"learning_rate": 4.999499509357132e-07,
|
45 |
+
"logits/chosen": -0.4793759286403656,
|
46 |
+
"logits/rejected": -0.37052756547927856,
|
47 |
+
"logps/chosen": -155.6678009033203,
|
48 |
+
"logps/rejected": -199.44947814941406,
|
49 |
+
"loss": 0.6889,
|
50 |
+
"rewards/accuracies": 0.8125,
|
51 |
+
"rewards/chosen": 0.005186144262552261,
|
52 |
+
"rewards/margins": 0.009383995085954666,
|
53 |
+
"rewards/rejected": -0.004197851754724979,
|
54 |
+
"step": 10
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.18058690744920994,
|
58 |
+
"grad_norm": 12.493337631225586,
|
59 |
+
"learning_rate": 4.982003369106287e-07,
|
60 |
+
"logits/chosen": -0.49185729026794434,
|
61 |
+
"logits/rejected": -0.37670475244522095,
|
62 |
+
"logps/chosen": -76.30625915527344,
|
63 |
+
"logps/rejected": -177.40817260742188,
|
64 |
+
"loss": 0.6691,
|
65 |
+
"rewards/accuracies": 1.0,
|
66 |
+
"rewards/chosen": 0.028129320591688156,
|
67 |
+
"rewards/margins": 0.048517487943172455,
|
68 |
+
"rewards/rejected": -0.020388163626194,
|
69 |
+
"step": 15
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.24078254326561324,
|
73 |
+
"grad_norm": 11.79749870300293,
|
74 |
+
"learning_rate": 4.939682729058838e-07,
|
75 |
+
"logits/chosen": -0.45126277208328247,
|
76 |
+
"logits/rejected": -0.3729521930217743,
|
77 |
+
"logps/chosen": -166.20733642578125,
|
78 |
+
"logps/rejected": -207.5035400390625,
|
79 |
+
"loss": 0.6249,
|
80 |
+
"rewards/accuracies": 1.0,
|
81 |
+
"rewards/chosen": 0.08626963198184967,
|
82 |
+
"rewards/margins": 0.14315639436244965,
|
83 |
+
"rewards/rejected": -0.05688678100705147,
|
84 |
+
"step": 20
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.3009781790820166,
|
88 |
+
"grad_norm": 10.574383735656738,
|
89 |
+
"learning_rate": 4.872960871766826e-07,
|
90 |
+
"logits/chosen": -0.4710594713687897,
|
91 |
+
"logits/rejected": -0.3694532513618469,
|
92 |
+
"logps/chosen": -86.93299865722656,
|
93 |
+
"logps/rejected": -186.15248107910156,
|
94 |
+
"loss": 0.587,
|
95 |
+
"rewards/accuracies": 1.0,
|
96 |
+
"rewards/chosen": 0.12460210174322128,
|
97 |
+
"rewards/margins": 0.23137669265270233,
|
98 |
+
"rewards/rejected": -0.10677458345890045,
|
99 |
+
"step": 25
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.3611738148984199,
|
103 |
+
"grad_norm": 11.093204498291016,
|
104 |
+
"learning_rate": 4.782505135862175e-07,
|
105 |
+
"logits/chosen": -0.45945605635643005,
|
106 |
+
"logits/rejected": -0.33354875445365906,
|
107 |
+
"logps/chosen": -71.20188903808594,
|
108 |
+
"logps/rejected": -212.95767211914062,
|
109 |
+
"loss": 0.5229,
|
110 |
+
"rewards/accuracies": 1.0,
|
111 |
+
"rewards/chosen": 0.16831260919570923,
|
112 |
+
"rewards/margins": 0.38181251287460327,
|
113 |
+
"rewards/rejected": -0.21349990367889404,
|
114 |
+
"step": 30
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.3611738148984199,
|
118 |
+
"eval_logits/chosen": -0.4618959426879883,
|
119 |
+
"eval_logits/rejected": -0.3433874249458313,
|
120 |
+
"eval_logps/chosen": -98.28858947753906,
|
121 |
+
"eval_logps/rejected": -212.0100555419922,
|
122 |
+
"eval_loss": 0.5059286952018738,
|
123 |
+
"eval_rewards/accuracies": 1.0,
|
124 |
+
"eval_rewards/chosen": 0.18195854127407074,
|
125 |
+
"eval_rewards/margins": 0.4181654751300812,
|
126 |
+
"eval_rewards/rejected": -0.23620688915252686,
|
127 |
+
"eval_runtime": 179.4182,
|
128 |
+
"eval_samples_per_second": 3.043,
|
129 |
+
"eval_steps_per_second": 1.522,
|
130 |
+
"step": 30
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.4213694507148232,
|
134 |
+
"grad_norm": 9.376220703125,
|
135 |
+
"learning_rate": 4.6692202414695724e-07,
|
136 |
+
"logits/chosen": -0.4632042944431305,
|
137 |
+
"logits/rejected": -0.35029542446136475,
|
138 |
+
"logps/chosen": -84.06396484375,
|
139 |
+
"logps/rejected": -213.848388671875,
|
140 |
+
"loss": 0.4976,
|
141 |
+
"rewards/accuracies": 1.0,
|
142 |
+
"rewards/chosen": 0.2034817487001419,
|
143 |
+
"rewards/margins": 0.4632874131202698,
|
144 |
+
"rewards/rejected": -0.25980567932128906,
|
145 |
+
"step": 35
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.4815650865312265,
|
149 |
+
"grad_norm": 8.679346084594727,
|
150 |
+
"learning_rate": 4.534239241377266e-07,
|
151 |
+
"logits/chosen": -0.44362330436706543,
|
152 |
+
"logits/rejected": -0.2992916703224182,
|
153 |
+
"logps/chosen": -105.2283706665039,
|
154 |
+
"logps/rejected": -244.84890747070312,
|
155 |
+
"loss": 0.4197,
|
156 |
+
"rewards/accuracies": 1.0,
|
157 |
+
"rewards/chosen": 0.22778573632240295,
|
158 |
+
"rewards/margins": 0.6910415291786194,
|
159 |
+
"rewards/rejected": -0.46325573325157166,
|
160 |
+
"step": 40
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.5417607223476298,
|
164 |
+
"grad_norm": 7.219143867492676,
|
165 |
+
"learning_rate": 4.3789121884703727e-07,
|
166 |
+
"logits/chosen": -0.41270333528518677,
|
167 |
+
"logits/rejected": -0.27924439311027527,
|
168 |
+
"logps/chosen": -70.08865356445312,
|
169 |
+
"logps/rejected": -261.56170654296875,
|
170 |
+
"loss": 0.3621,
|
171 |
+
"rewards/accuracies": 1.0,
|
172 |
+
"rewards/chosen": 0.23598209023475647,
|
173 |
+
"rewards/margins": 0.9187321662902832,
|
174 |
+
"rewards/rejected": -0.6827500462532043,
|
175 |
+
"step": 45
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.6019563581640331,
|
179 |
+
"grad_norm": 6.640863418579102,
|
180 |
+
"learning_rate": 4.204792632772754e-07,
|
181 |
+
"logits/chosen": -0.4174782633781433,
|
182 |
+
"logits/rejected": -0.2659801244735718,
|
183 |
+
"logps/chosen": -109.1211166381836,
|
184 |
+
"logps/rejected": -280.77813720703125,
|
185 |
+
"loss": 0.3123,
|
186 |
+
"rewards/accuracies": 1.0,
|
187 |
+
"rewards/chosen": 0.2913265824317932,
|
188 |
+
"rewards/margins": 1.1760694980621338,
|
189 |
+
"rewards/rejected": -0.8847430348396301,
|
190 |
+
"step": 50
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 0.6621519939804364,
|
194 |
+
"grad_norm": 5.293730735778809,
|
195 |
+
"learning_rate": 4.01362208315132e-07,
|
196 |
+
"logits/chosen": -0.4078051447868347,
|
197 |
+
"logits/rejected": -0.25378990173339844,
|
198 |
+
"logps/chosen": -116.1395492553711,
|
199 |
+
"logps/rejected": -301.702392578125,
|
200 |
+
"loss": 0.2619,
|
201 |
+
"rewards/accuracies": 1.0,
|
202 |
+
"rewards/chosen": 0.3083065152168274,
|
203 |
+
"rewards/margins": 1.4346027374267578,
|
204 |
+
"rewards/rejected": -1.1262962818145752,
|
205 |
+
"step": 55
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.7223476297968398,
|
209 |
+
"grad_norm": 4.923187255859375,
|
210 |
+
"learning_rate": 3.807312589093701e-07,
|
211 |
+
"logits/chosen": -0.4022981524467468,
|
212 |
+
"logits/rejected": -0.2537968158721924,
|
213 |
+
"logps/chosen": -103.5102310180664,
|
214 |
+
"logps/rejected": -326.17486572265625,
|
215 |
+
"loss": 0.2411,
|
216 |
+
"rewards/accuracies": 1.0,
|
217 |
+
"rewards/chosen": 0.2954918146133423,
|
218 |
+
"rewards/margins": 1.6640812158584595,
|
219 |
+
"rewards/rejected": -1.3685895204544067,
|
220 |
+
"step": 60
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.7223476297968398,
|
224 |
+
"eval_logits/chosen": -0.406698077917099,
|
225 |
+
"eval_logits/rejected": -0.23272451758384705,
|
226 |
+
"eval_logps/chosen": -88.900146484375,
|
227 |
+
"eval_logps/rejected": -330.7860107421875,
|
228 |
+
"eval_loss": 0.2134791761636734,
|
229 |
+
"eval_rewards/accuracies": 1.0,
|
230 |
+
"eval_rewards/chosen": 0.27584296464920044,
|
231 |
+
"eval_rewards/margins": 1.699809193611145,
|
232 |
+
"eval_rewards/rejected": -1.4239662885665894,
|
233 |
+
"eval_runtime": 183.6706,
|
234 |
+
"eval_samples_per_second": 2.973,
|
235 |
+
"eval_steps_per_second": 1.486,
|
236 |
+
"step": 60
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.782543265613243,
|
240 |
+
"grad_norm": 4.418694496154785,
|
241 |
+
"learning_rate": 3.5879276167728337e-07,
|
242 |
+
"logits/chosen": -0.4011690616607666,
|
243 |
+
"logits/rejected": -0.22693100571632385,
|
244 |
+
"logps/chosen": -56.017845153808594,
|
245 |
+
"logps/rejected": -332.90380859375,
|
246 |
+
"loss": 0.1992,
|
247 |
+
"rewards/accuracies": 1.0,
|
248 |
+
"rewards/chosen": 0.2577177882194519,
|
249 |
+
"rewards/margins": 1.7556695938110352,
|
250 |
+
"rewards/rejected": -1.497951865196228,
|
251 |
+
"step": 65
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.8427389014296464,
|
255 |
+
"grad_norm": 3.794067859649658,
|
256 |
+
"learning_rate": 3.357661410672247e-07,
|
257 |
+
"logits/chosen": -0.33221831917762756,
|
258 |
+
"logits/rejected": -0.1342475712299347,
|
259 |
+
"logps/chosen": -74.8525619506836,
|
260 |
+
"logps/rejected": -393.6372985839844,
|
261 |
+
"loss": 0.1573,
|
262 |
+
"rewards/accuracies": 1.0,
|
263 |
+
"rewards/chosen": 0.25318774580955505,
|
264 |
+
"rewards/margins": 2.2917141914367676,
|
265 |
+
"rewards/rejected": -2.0385265350341797,
|
266 |
+
"step": 70
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.9029345372460497,
|
270 |
+
"grad_norm": 3.2060582637786865,
|
271 |
+
"learning_rate": 3.1188170471929064e-07,
|
272 |
+
"logits/chosen": -0.2731170058250427,
|
273 |
+
"logits/rejected": -0.10557065159082413,
|
274 |
+
"logps/chosen": -161.33474731445312,
|
275 |
+
"logps/rejected": -437.1578063964844,
|
276 |
+
"loss": 0.1191,
|
277 |
+
"rewards/accuracies": 1.0,
|
278 |
+
"rewards/chosen": 0.2284388542175293,
|
279 |
+
"rewards/margins": 2.7684743404388428,
|
280 |
+
"rewards/rejected": -2.5400352478027344,
|
281 |
+
"step": 75
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.963130173062453,
|
285 |
+
"grad_norm": 1.8243048191070557,
|
286 |
+
"learning_rate": 2.8737833997450657e-07,
|
287 |
+
"logits/chosen": -0.2729615569114685,
|
288 |
+
"logits/rejected": -0.0838087797164917,
|
289 |
+
"logps/chosen": -80.7784423828125,
|
290 |
+
"logps/rejected": -492.26080322265625,
|
291 |
+
"loss": 0.0926,
|
292 |
+
"rewards/accuracies": 1.0,
|
293 |
+
"rewards/chosen": 0.21951308846473694,
|
294 |
+
"rewards/margins": 3.2957847118377686,
|
295 |
+
"rewards/rejected": -3.0762715339660645,
|
296 |
+
"step": 80
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.0233258088788564,
|
300 |
+
"grad_norm": 1.6663548946380615,
|
301 |
+
"learning_rate": 2.6250112457156293e-07,
|
302 |
+
"logits/chosen": -0.2614014744758606,
|
303 |
+
"logits/rejected": -0.06510574370622635,
|
304 |
+
"logps/chosen": -87.82209777832031,
|
305 |
+
"logps/rejected": -556.6070556640625,
|
306 |
+
"loss": 0.0775,
|
307 |
+
"rewards/accuracies": 1.0,
|
308 |
+
"rewards/chosen": 0.1841917783021927,
|
309 |
+
"rewards/margins": 3.8404979705810547,
|
310 |
+
"rewards/rejected": -3.656306028366089,
|
311 |
+
"step": 85
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 1.0835214446952597,
|
315 |
+
"grad_norm": 1.4261465072631836,
|
316 |
+
"learning_rate": 2.3749887542843707e-07,
|
317 |
+
"logits/chosen": -0.26909708976745605,
|
318 |
+
"logits/rejected": -0.0703195109963417,
|
319 |
+
"logps/chosen": -100.4935531616211,
|
320 |
+
"logps/rejected": -598.0264892578125,
|
321 |
+
"loss": 0.0634,
|
322 |
+
"rewards/accuracies": 1.0,
|
323 |
+
"rewards/chosen": 0.16738824546337128,
|
324 |
+
"rewards/margins": 4.255741119384766,
|
325 |
+
"rewards/rejected": -4.088352680206299,
|
326 |
+
"step": 90
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.0835214446952597,
|
330 |
+
"eval_logits/chosen": -0.25795042514801025,
|
331 |
+
"eval_logits/rejected": -0.035701148211956024,
|
332 |
+
"eval_logps/chosen": -99.51206970214844,
|
333 |
+
"eval_logps/rejected": -607.3591918945312,
|
334 |
+
"eval_loss": 0.07514728605747223,
|
335 |
+
"eval_rewards/accuracies": 1.0,
|
336 |
+
"eval_rewards/chosen": 0.16972379386425018,
|
337 |
+
"eval_rewards/margins": 4.359421730041504,
|
338 |
+
"eval_rewards/rejected": -4.189698219299316,
|
339 |
+
"eval_runtime": 184.8502,
|
340 |
+
"eval_samples_per_second": 2.954,
|
341 |
+
"eval_steps_per_second": 1.477,
|
342 |
+
"step": 90
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 1.143717080511663,
|
346 |
+
"grad_norm": 1.3145774602890015,
|
347 |
+
"learning_rate": 2.126216600254934e-07,
|
348 |
+
"logits/chosen": -0.2394520789384842,
|
349 |
+
"logits/rejected": -0.023534994572401047,
|
350 |
+
"logps/chosen": -150.5535888671875,
|
351 |
+
"logps/rejected": -699.5059814453125,
|
352 |
+
"loss": 0.0605,
|
353 |
+
"rewards/accuracies": 1.0,
|
354 |
+
"rewards/chosen": 0.09343000501394272,
|
355 |
+
"rewards/margins": 5.061221122741699,
|
356 |
+
"rewards/rejected": -4.967791557312012,
|
357 |
+
"step": 95
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 1.2039127163280663,
|
361 |
+
"grad_norm": 0.628934919834137,
|
362 |
+
"learning_rate": 1.8811829528070931e-07,
|
363 |
+
"logits/chosen": -0.2859761714935303,
|
364 |
+
"logits/rejected": -0.027079975232481956,
|
365 |
+
"logps/chosen": -72.18778991699219,
|
366 |
+
"logps/rejected": -737.0675048828125,
|
367 |
+
"loss": 0.0489,
|
368 |
+
"rewards/accuracies": 1.0,
|
369 |
+
"rewards/chosen": 0.1680155098438263,
|
370 |
+
"rewards/margins": 5.535449028015137,
|
371 |
+
"rewards/rejected": -5.367433547973633,
|
372 |
+
"step": 100
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 1.2648607975921746,
|
376 |
+
"grad_norm": 0.8070765733718872,
|
377 |
+
"learning_rate": 1.6423385893277537e-07,
|
378 |
+
"logits/chosen": -0.24801869690418243,
|
379 |
+
"logits/rejected": -0.014291681349277496,
|
380 |
+
"logps/chosen": -109.48841857910156,
|
381 |
+
"logps/rejected": -681.1419677734375,
|
382 |
+
"loss": 0.0476,
|
383 |
+
"rewards/accuracies": 1.0,
|
384 |
+
"rewards/chosen": 0.09798868745565414,
|
385 |
+
"rewards/margins": 5.150273323059082,
|
386 |
+
"rewards/rejected": -5.052285194396973,
|
387 |
+
"step": 105
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.325056433408578,
|
391 |
+
"grad_norm": 0.6888783574104309,
|
392 |
+
"learning_rate": 1.4120723832271663e-07,
|
393 |
+
"logits/chosen": -0.23577141761779785,
|
394 |
+
"logits/rejected": -0.011897795833647251,
|
395 |
+
"logps/chosen": -120.05766296386719,
|
396 |
+
"logps/rejected": -731.9443969726562,
|
397 |
+
"loss": 0.054,
|
398 |
+
"rewards/accuracies": 1.0,
|
399 |
+
"rewards/chosen": 0.07691726088523865,
|
400 |
+
"rewards/margins": 5.525856018066406,
|
401 |
+
"rewards/rejected": -5.448939323425293,
|
402 |
+
"step": 110
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 1.3852520692249812,
|
406 |
+
"grad_norm": 0.6200137734413147,
|
407 |
+
"learning_rate": 1.1926874109062998e-07,
|
408 |
+
"logits/chosen": -0.2343941181898117,
|
409 |
+
"logits/rejected": 0.012432652525603771,
|
410 |
+
"logps/chosen": -131.77175903320312,
|
411 |
+
"logps/rejected": -745.412841796875,
|
412 |
+
"loss": 0.0496,
|
413 |
+
"rewards/accuracies": 1.0,
|
414 |
+
"rewards/chosen": 0.02012884058058262,
|
415 |
+
"rewards/margins": 5.680893898010254,
|
416 |
+
"rewards/rejected": -5.660765171051025,
|
417 |
+
"step": 115
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.4454477050413845,
|
421 |
+
"grad_norm": 0.5668838620185852,
|
422 |
+
"learning_rate": 9.863779168486797e-08,
|
423 |
+
"logits/chosen": -0.22034311294555664,
|
424 |
+
"logits/rejected": 0.03210270777344704,
|
425 |
+
"logps/chosen": -115.6126708984375,
|
426 |
+
"logps/rejected": -790.9016723632812,
|
427 |
+
"loss": 0.0452,
|
428 |
+
"rewards/accuracies": 1.0,
|
429 |
+
"rewards/chosen": 0.053596943616867065,
|
430 |
+
"rewards/margins": 6.07260799407959,
|
431 |
+
"rewards/rejected": -6.0190110206604,
|
432 |
+
"step": 120
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 1.4454477050413845,
|
436 |
+
"eval_logits/chosen": -0.2345404177904129,
|
437 |
+
"eval_logits/rejected": 0.038044609129428864,
|
438 |
+
"eval_logps/chosen": -108.91590881347656,
|
439 |
+
"eval_logps/rejected": -782.349365234375,
|
440 |
+
"eval_loss": 0.05323062837123871,
|
441 |
+
"eval_rewards/accuracies": 1.0,
|
442 |
+
"eval_rewards/chosen": 0.07568521797657013,
|
443 |
+
"eval_rewards/margins": 6.015285491943359,
|
444 |
+
"eval_rewards/rejected": -5.939600467681885,
|
445 |
+
"eval_runtime": 191.5149,
|
446 |
+
"eval_samples_per_second": 2.851,
|
447 |
+
"eval_steps_per_second": 1.425,
|
448 |
+
"step": 120
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 1.5056433408577878,
|
452 |
+
"grad_norm": 0.7317198514938354,
|
453 |
+
"learning_rate": 7.952073672272464e-08,
|
454 |
+
"logits/chosen": -0.21637864410877228,
|
455 |
+
"logits/rejected": 0.0313236340880394,
|
456 |
+
"logps/chosen": -126.0725326538086,
|
457 |
+
"logps/rejected": -756.0071411132812,
|
458 |
+
"loss": 0.0492,
|
459 |
+
"rewards/accuracies": 1.0,
|
460 |
+
"rewards/chosen": -0.008594411425292492,
|
461 |
+
"rewards/margins": 5.820641994476318,
|
462 |
+
"rewards/rejected": -5.82923698425293,
|
463 |
+
"step": 125
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 1.5658389766741911,
|
467 |
+
"grad_norm": 0.5411990284919739,
|
468 |
+
"learning_rate": 6.210878115296267e-08,
|
469 |
+
"logits/chosen": -0.2258405238389969,
|
470 |
+
"logits/rejected": 0.026202013716101646,
|
471 |
+
"logps/chosen": -144.01856994628906,
|
472 |
+
"logps/rejected": -760.4769287109375,
|
473 |
+
"loss": 0.029,
|
474 |
+
"rewards/accuracies": 1.0,
|
475 |
+
"rewards/chosen": -0.01425357349216938,
|
476 |
+
"rewards/margins": 5.899747371673584,
|
477 |
+
"rewards/rejected": -5.91400146484375,
|
478 |
+
"step": 130
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.6260346124905944,
|
482 |
+
"grad_norm": 0.30838528275489807,
|
483 |
+
"learning_rate": 4.657607586227344e-08,
|
484 |
+
"logits/chosen": -0.23345847427845,
|
485 |
+
"logits/rejected": 0.027966421097517014,
|
486 |
+
"logps/chosen": -124.6040267944336,
|
487 |
+
"logps/rejected": -917.08349609375,
|
488 |
+
"loss": 0.036,
|
489 |
+
"rewards/accuracies": 1.0,
|
490 |
+
"rewards/chosen": 0.0217633955180645,
|
491 |
+
"rewards/margins": 7.151785850524902,
|
492 |
+
"rewards/rejected": -7.1300225257873535,
|
493 |
+
"step": 135
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 1.6862302483069977,
|
497 |
+
"grad_norm": 1.47968590259552,
|
498 |
+
"learning_rate": 3.30779758530427e-08,
|
499 |
+
"logits/chosen": -0.2245132029056549,
|
500 |
+
"logits/rejected": 0.047028228640556335,
|
501 |
+
"logps/chosen": -118.25953674316406,
|
502 |
+
"logps/rejected": -851.4835205078125,
|
503 |
+
"loss": 0.0516,
|
504 |
+
"rewards/accuracies": 0.987500011920929,
|
505 |
+
"rewards/chosen": -0.0352528840303421,
|
506 |
+
"rewards/margins": 6.62514591217041,
|
507 |
+
"rewards/rejected": -6.660399436950684,
|
508 |
+
"step": 140
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 1.746425884123401,
|
512 |
+
"grad_norm": 0.5548922419548035,
|
513 |
+
"learning_rate": 2.1749486413782435e-08,
|
514 |
+
"logits/chosen": -0.21600095927715302,
|
515 |
+
"logits/rejected": 0.06509985029697418,
|
516 |
+
"logps/chosen": -140.62574768066406,
|
517 |
+
"logps/rejected": -936.2386474609375,
|
518 |
+
"loss": 0.0312,
|
519 |
+
"rewards/accuracies": 1.0,
|
520 |
+
"rewards/chosen": -0.07837997376918793,
|
521 |
+
"rewards/margins": 7.2990617752075195,
|
522 |
+
"rewards/rejected": -7.37744140625,
|
523 |
+
"step": 145
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 1.8066215199398044,
|
527 |
+
"grad_norm": 0.5003569722175598,
|
528 |
+
"learning_rate": 1.2703912823317397e-08,
|
529 |
+
"logits/chosen": -0.20677892863750458,
|
530 |
+
"logits/rejected": 0.06903555244207382,
|
531 |
+
"logps/chosen": -150.6492919921875,
|
532 |
+
"logps/rejected": -826.0875244140625,
|
533 |
+
"loss": 0.0307,
|
534 |
+
"rewards/accuracies": 1.0,
|
535 |
+
"rewards/chosen": -0.09083503484725952,
|
536 |
+
"rewards/margins": 6.384757995605469,
|
537 |
+
"rewards/rejected": -6.475593566894531,
|
538 |
+
"step": 150
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 1.8066215199398044,
|
542 |
+
"eval_logits/chosen": -0.230697363615036,
|
543 |
+
"eval_logits/rejected": 0.079569511115551,
|
544 |
+
"eval_logps/chosen": -114.66878509521484,
|
545 |
+
"eval_logps/rejected": -867.22607421875,
|
546 |
+
"eval_loss": 0.045937325805425644,
|
547 |
+
"eval_rewards/accuracies": 1.0,
|
548 |
+
"eval_rewards/chosen": 0.018156491219997406,
|
549 |
+
"eval_rewards/margins": 6.806523323059082,
|
550 |
+
"eval_rewards/rejected": -6.78836727142334,
|
551 |
+
"eval_runtime": 193.7203,
|
552 |
+
"eval_samples_per_second": 2.818,
|
553 |
+
"eval_steps_per_second": 1.409,
|
554 |
+
"step": 150
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 1.8668171557562077,
|
558 |
+
"grad_norm": 0.303206205368042,
|
559 |
+
"learning_rate": 6.031727094116174e-09,
|
560 |
+
"logits/chosen": -0.22335031628608704,
|
561 |
+
"logits/rejected": 0.0749906450510025,
|
562 |
+
"logps/chosen": -178.22097778320312,
|
563 |
+
"logps/rejected": -1008.4031372070312,
|
564 |
+
"loss": 0.0311,
|
565 |
+
"rewards/accuracies": 1.0,
|
566 |
+
"rewards/chosen": -0.15972693264484406,
|
567 |
+
"rewards/margins": 7.850977420806885,
|
568 |
+
"rewards/rejected": -8.01070499420166,
|
569 |
+
"step": 155
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.927012791572611,
|
573 |
+
"grad_norm": 0.5809817910194397,
|
574 |
+
"learning_rate": 1.7996630893712671e-09,
|
575 |
+
"logits/chosen": -0.20071235299110413,
|
576 |
+
"logits/rejected": 0.08598125725984573,
|
577 |
+
"logps/chosen": -156.4674530029297,
|
578 |
+
"logps/rejected": -796.1658325195312,
|
579 |
+
"loss": 0.0451,
|
580 |
+
"rewards/accuracies": 1.0,
|
581 |
+
"rewards/chosen": -0.11812801659107208,
|
582 |
+
"rewards/margins": 6.20440673828125,
|
583 |
+
"rewards/rejected": -6.322534084320068,
|
584 |
+
"step": 160
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 1.9872084273890143,
|
588 |
+
"grad_norm": 0.5935037732124329,
|
589 |
+
"learning_rate": 5.0049064286850074e-11,
|
590 |
+
"logits/chosen": -0.20801086723804474,
|
591 |
+
"logits/rejected": 0.09084095805883408,
|
592 |
+
"logps/chosen": -133.05039978027344,
|
593 |
+
"logps/rejected": -858.1156005859375,
|
594 |
+
"loss": 0.0449,
|
595 |
+
"rewards/accuracies": 1.0,
|
596 |
+
"rewards/chosen": -0.057532183825969696,
|
597 |
+
"rewards/margins": 6.773335933685303,
|
598 |
+
"rewards/rejected": -6.830867767333984,
|
599 |
+
"step": 165
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 1.999247554552295,
|
603 |
+
"step": 166,
|
604 |
+
"total_flos": 0.0,
|
605 |
+
"train_loss": 0.01645123219139964,
|
606 |
+
"train_runtime": 7014.6347,
|
607 |
+
"train_samples_per_second": 0.758,
|
608 |
+
"train_steps_per_second": 0.024
|
609 |
+
}
|
610 |
+
],
|
611 |
+
"logging_steps": 5,
|
612 |
+
"max_steps": 166,
|
613 |
+
"num_input_tokens_seen": 0,
|
614 |
+
"num_train_epochs": 2,
|
615 |
+
"save_steps": 50,
|
616 |
+
"stateful_callbacks": {
|
617 |
+
"TrainerControl": {
|
618 |
+
"args": {
|
619 |
+
"should_epoch_stop": false,
|
620 |
+
"should_evaluate": false,
|
621 |
+
"should_log": false,
|
622 |
+
"should_save": true,
|
623 |
+
"should_training_stop": true
|
624 |
+
},
|
625 |
+
"attributes": {}
|
626 |
+
}
|
627 |
+
},
|
628 |
+
"total_flos": 0.0,
|
629 |
+
"train_batch_size": 1,
|
630 |
+
"trial_name": null,
|
631 |
+
"trial_params": null
|
632 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5180ea7aa0803ccae3d36718535d613b9b90d878e587e68a6715443f666f6438
|
3 |
+
size 7480
|