youval commited on
Commit
549db57
·
1 Parent(s): 04e4185

update model card

Browse files
Files changed (1) hide show
  1. README.md +92 -84
README.md CHANGED
@@ -1,84 +1,92 @@
1
- ---
2
- language:
3
- - en
4
- ---
5
-
6
- # Model Card for `passage-ranker-v1-L-en`
7
-
8
- This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
9
- used to order search results.
10
-
11
- Model name: `passage-ranker-v1-L-en`
12
-
13
- ## Supported Languages
14
-
15
- The model was trained and tested in the following languages:
16
-
17
- - English
18
-
19
- ## Scores
20
-
21
- | Metric | Value |
22
- |:--------------------|------:|
23
- | Relevance (NDCG@10) | 0.466 |
24
-
25
- Note that the relevance score is computed as an average over 14 retrieval datasets (see
26
- [details below](#evaluation-metrics)).
27
-
28
- ## Inference Times
29
-
30
- | GPU | Batch size 32 |
31
- |:-----------|--------------:|
32
- | NVIDIA A10 | 83 ms |
33
- | NVIDIA T4 | 356 ms |
34
-
35
- The inference times only measure the time the model takes to process a single batch, it does not include pre- or
36
- post-processing steps like the tokenization.
37
-
38
- ## Requirements
39
-
40
- - Minimal Sinequa version: 11.10.0
41
- - GPU memory usage: 1060 MiB
42
-
43
- Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
44
- size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
45
- can be around 0.5 to 1 GiB depending on the used GPU.
46
-
47
- ## Model Details
48
-
49
- ### Overview
50
-
51
- - Number of parameters: 109 million
52
- - Base language model: [English BERT-Base](https://huggingface.co/bert-base-uncased)
53
- - Insensitive to casing and accents
54
- - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
55
-
56
- ### Training Data
57
-
58
- - Probably-Asked Questions
59
- ([Paper](https://arxiv.org/abs/2102.07033),
60
- [Official Page](https://github.com/facebookresearch/PAQ))
61
-
62
- ### Evaluation Metrics
63
-
64
- To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
65
- [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
66
-
67
- | Dataset | NDCG@10 |
68
- |:------------------|--------:|
69
- | Average | 0.466 |
70
- | | |
71
- | Arguana | 0.567 |
72
- | CLIMATE-FEVER | 0.162 |
73
- | DBPedia Entity | 0.363 |
74
- | FEVER | 0.721 |
75
- | FiQA-2018 | 0.304 |
76
- | HotpotQA | 0.680 |
77
- | MS MARCO | 0.342 |
78
- | NFCorpus | 0.346 |
79
- | NQ | 0.487 |
80
- | Quora | 0.779 |
81
- | SCIDOCS | 0.150 |
82
- | SciFact | 0.649 |
83
- | TREC-COVID | 0.683 |
84
- | Webis-Touche-2020 | 0.287 |
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Model Card for `passage-ranker-v1-L-en`
7
+
8
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.
9
+
10
+ Model name: `passage-ranker-v1-L-en`
11
+
12
+ ## Supported Languages
13
+
14
+ The model was trained and tested in the following languages:
15
+
16
+ - English
17
+
18
+ ## Scores
19
+
20
+ | Metric | Value |
21
+ |:--------------------|------:|
22
+ | Relevance (NDCG@10) | 0.466 |
23
+
24
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
25
+ [details below](#evaluation-metrics)).
26
+
27
+ ## Inference Times
28
+
29
+ | GPU | Quantization type | Batch size 1 | Batch size 32 |
30
+ |:------------------------------------------|:------------------|---------------:|---------------:|
31
+ | NVIDIA A10 | FP16 | 2 ms | 27 ms |
32
+ | NVIDIA A10 | FP32 | 4 ms | 82 ms |
33
+ | NVIDIA T4 | FP16 | 3 ms | 63 ms |
34
+ | NVIDIA T4 | FP32 | 13 ms | 342 ms |
35
+ | NVIDIA L4 | FP16 | 2 ms | 39 ms |
36
+ | NVIDIA L4 | FP32 | 5 ms | 119 ms |
37
+
38
+ ## Gpu Memory usage
39
+
40
+ | Quantization type | Memory |
41
+ |:-------------------------------------------------|-----------:|
42
+ | FP16 | 550 MiB |
43
+ | FP32 | 1100 MiB |
44
+
45
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
46
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
47
+ can be around 0.5 to 1 GiB depending on the used GPU.
48
+
49
+ ## Requirements
50
+
51
+ - Minimal Sinequa version: 11.10.0
52
+ - Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
53
+ - [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
54
+
55
+ ## Model Details
56
+
57
+ ### Overview
58
+
59
+ - Number of parameters: 109 million
60
+ - Base language model: [English BERT-Base](https://huggingface.co/bert-base-uncased)
61
+ - Insensitive to casing and accents
62
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
63
+
64
+ ### Training Data
65
+
66
+ - Probably-Asked Questions
67
+ ([Paper](https://arxiv.org/abs/2102.07033),
68
+ [Official Page](https://github.com/facebookresearch/PAQ))
69
+
70
+ ### Evaluation Metrics
71
+
72
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
73
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
74
+
75
+ | Dataset | NDCG@10 |
76
+ |:------------------|--------:|
77
+ | Average | 0.466 |
78
+ | | |
79
+ | Arguana | 0.567 |
80
+ | CLIMATE-FEVER | 0.162 |
81
+ | DBPedia Entity | 0.363 |
82
+ | FEVER | 0.721 |
83
+ | FiQA-2018 | 0.304 |
84
+ | HotpotQA | 0.680 |
85
+ | MS MARCO | 0.342 |
86
+ | NFCorpus | 0.346 |
87
+ | NQ | 0.487 |
88
+ | Quora | 0.779 |
89
+ | SCIDOCS | 0.150 |
90
+ | SciFact | 0.649 |
91
+ | TREC-COVID | 0.683 |
92
+ | Webis-Touche-2020 | 0.287 |