Antonio Serrano Muñoz commited on
Commit
2081149
·
1 Parent(s): 51c8601

Add README

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: skrl
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - skrl
7
+ model-index:
8
+ - name: PPO
9
+ results:
10
+ - metrics:
11
+ - type: mean_reward
12
+ value: 41.69 +/- 0.06
13
+ name: Total reward (mean)
14
+ task:
15
+ type: reinforcement-learning
16
+ name: reinforcement-learning
17
+ dataset:
18
+ name: Isaac-Lift-Franka-v0
19
+ type: Isaac-Lift-Franka-v0
20
+ ---
21
+
22
+ <!-- ---
23
+ torch: 41.69 +/- 0.06
24
+ jax: 42.7 +/- 0.0
25
+ numpy:
26
+ --- -->
27
+
28
+ # IsaacOrbit-Isaac-Lift-Franka-v0-PPO
29
+
30
+ Trained agent for [NVIDIA Isaac Orbit](https://github.com/NVIDIA-Omniverse/Orbit) environments.
31
+
32
+ - **Task:** Isaac-Lift-Franka-v0
33
+ - **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/api/agents/ppo.html)
34
+
35
+ # Usage (with skrl)
36
+
37
+ Note: Visit the skrl [Examples](https://skrl.readthedocs.io/en/latest/intro/examples.html) section to access the scripts.
38
+
39
+ * PyTorch
40
+
41
+ ```python
42
+ from skrl.utils.huggingface import download_model_from_huggingface
43
+
44
+ # assuming that there is an agent named `agent`
45
+ path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Lift-Franka-v0-PPO", filename="agent.pt")
46
+ agent.load(path)
47
+ ```
48
+
49
+ * JAX
50
+
51
+ ```python
52
+ from skrl.utils.huggingface import download_model_from_huggingface
53
+
54
+ # assuming that there is an agent named `agent`
55
+ path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Lift-Franka-v0-PPO", filename="agent.pickle")
56
+ agent.load(path)
57
+ ```
58
+
59
+ # Hyperparameters
60
+
61
+ ```python
62
+ # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters
63
+ cfg = PPO_DEFAULT_CONFIG.copy()
64
+ cfg["rollouts"] = 96 # memory_size
65
+ cfg["learning_epochs"] = 5
66
+ cfg["mini_batches"] = 4 # 96 * 4096 / 98304
67
+ cfg["discount_factor"] = 0.99
68
+ cfg["lambda"] = 0.95
69
+ cfg["learning_rate"] = 1e-3
70
+ cfg["learning_rate_scheduler"] = KLAdaptiveLR
71
+ cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01, "min_lr": 1e-5}
72
+ cfg["random_timesteps"] = 0
73
+ cfg["learning_starts"] = 0
74
+ cfg["grad_norm_clip"] = 1.0
75
+ cfg["ratio_clip"] = 0.2
76
+ cfg["value_clip"] = 0.2
77
+ cfg["clip_predicted_values"] = True
78
+ cfg["entropy_loss_scale"] = 0.01
79
+ cfg["value_loss_scale"] = 1.0
80
+ cfg["kl_threshold"] = 0
81
+ cfg["rewards_shaper"] = None
82
+ cfg["time_limit_bootstrap"] = True
83
+ cfg["state_preprocessor"] = RunningStandardScaler
84
+ cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device}
85
+ cfg["value_preprocessor"] = RunningStandardScaler
86
+ cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device}
87
+ ```