skywalker290 commited on
Commit
bef87a4
·
verified ·
1 Parent(s): 815e319

End of training

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: google/vivit-b-16x2-kinetics400
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: Vivit-d3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Vivit-d3
18
+
19
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2800
22
+ - Accuracy: 0.9509
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 1
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - training_steps: 2240
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 3.113 | 0.1 | 224 | 0.2148 | 0.9464 |
56
+ | 3.4763 | 1.1 | 448 | 0.3339 | 0.8869 |
57
+ | 0.5019 | 2.1 | 672 | 0.3398 | 0.9449 |
58
+ | 0.0116 | 3.1 | 896 | 0.3553 | 0.9360 |
59
+ | 0.8144 | 4.1 | 1120 | 0.4592 | 0.9405 |
60
+ | 0.9856 | 5.1 | 1344 | 0.3184 | 0.9286 |
61
+ | 0.0005 | 6.1 | 1568 | 0.2253 | 0.9435 |
62
+ | 0.0001 | 7.1 | 1792 | 0.3713 | 0.9479 |
63
+ | 0.0 | 8.1 | 2016 | 0.3450 | 0.9479 |
64
+ | 0.2266 | 9.1 | 2240 | 0.2800 | 0.9509 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.46.2
70
+ - Pytorch 2.5.1+cu124
71
+ - Datasets 3.1.0
72
+ - Tokenizers 0.20.3