skywalker290
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: facebook/timesformer-base-finetuned-k400
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Timesformer-Timesformer-d1
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Timesformer-Timesformer-d1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/timesformer-base-finetuned-k400](https://huggingface.co/facebook/timesformer-base-finetuned-k400) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.3666
|
22 |
+
- Accuracy: 0.7858
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 1
|
43 |
+
- eval_batch_size: 1
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- training_steps: 12010
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
+
| 0.175 | 0.1 | 1201 | 2.3533 | 0.6138 |
|
56 |
+
| 1.0596 | 1.1 | 2402 | 2.0203 | 0.6365 |
|
57 |
+
| 0.4307 | 2.1 | 3603 | 1.3942 | 0.7236 |
|
58 |
+
| 0.0014 | 3.1 | 4804 | 1.6228 | 0.7173 |
|
59 |
+
| 1.0661 | 4.1 | 6005 | 1.5961 | 0.6632 |
|
60 |
+
| 0.0005 | 5.1 | 7206 | 1.6165 | 0.7348 |
|
61 |
+
| 0.56 | 6.1 | 8407 | 1.5308 | 0.7403 |
|
62 |
+
| 1.1296 | 7.1 | 9608 | 1.4128 | 0.7527 |
|
63 |
+
| 0.8918 | 8.1 | 10809 | 1.4968 | 0.7841 |
|
64 |
+
| 0.6107 | 9.1 | 12010 | 1.3666 | 0.7858 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.46.2
|
70 |
+
- Pytorch 2.5.1+cu124
|
71 |
+
- Datasets 3.1.0
|
72 |
+
- Tokenizers 0.20.3
|