File size: 2,100 Bytes
2f41037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VIVIT-d2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# VIVIT-d2

This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9103
- Accuracy: 0.4210

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6650
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.556         | 0.1   | 665  | 2.3470          | 0.2123   |
| 2.0142        | 1.1   | 1330 | 2.1601          | 0.3180   |
| 2.122         | 2.1   | 1995 | 2.0851          | 0.4047   |
| 1.7405        | 3.1   | 2660 | 2.3452          | 0.4205   |
| 1.2998        | 4.1   | 3325 | 2.3814          | 0.4557   |
| 1.4591        | 5.1   | 3990 | 2.7093          | 0.3820   |
| 0.8984        | 6.1   | 4655 | 2.5562          | 0.3584   |
| 0.3971        | 7.1   | 5320 | 3.1583          | 0.4057   |
| 0.5996        | 8.1   | 5985 | 2.9134          | 0.4154   |
| 0.8684        | 9.1   | 6650 | 2.9103          | 0.4210   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3