File size: 2,100 Bytes
2f41037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VIVIT-d2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VIVIT-d2
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9103
- Accuracy: 0.4210
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6650
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.556 | 0.1 | 665 | 2.3470 | 0.2123 |
| 2.0142 | 1.1 | 1330 | 2.1601 | 0.3180 |
| 2.122 | 2.1 | 1995 | 2.0851 | 0.4047 |
| 1.7405 | 3.1 | 2660 | 2.3452 | 0.4205 |
| 1.2998 | 4.1 | 3325 | 2.3814 | 0.4557 |
| 1.4591 | 5.1 | 3990 | 2.7093 | 0.3820 |
| 0.8984 | 6.1 | 4655 | 2.5562 | 0.3584 |
| 0.3971 | 7.1 | 5320 | 3.1583 | 0.4057 |
| 0.5996 | 8.1 | 5985 | 2.9134 | 0.4154 |
| 0.8684 | 9.1 | 6650 | 2.9103 | 0.4210 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|