chinnadhurai sankar
commited on
Commit
·
5028f79
1
Parent(s):
896f67a
initial commit
Browse files- elm/infer_elm.py +2 -2
- elm/infer_elm_for_demo_app.py +143 -0
- elm/model.py +1 -1
- elm/positional_embeddings.py +0 -2
- elm/utils.py +1 -6
elm/infer_elm.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright (c) 2024, SliceX AI, Inc.
|
2 |
|
3 |
from elm.model import *
|
4 |
from elm.utils import batchify
|
@@ -129,4 +129,4 @@ def generate_elm_responses(elm_model_path,
|
|
129 |
print(json.dumps({"prompt": prompt, "response": response}, indent=4))
|
130 |
print("\n***\n")
|
131 |
return result
|
132 |
-
|
|
|
1 |
+
# Copyright (c) 2024, SliceX AI, Inc.
|
2 |
|
3 |
from elm.model import *
|
4 |
from elm.utils import batchify
|
|
|
129 |
print(json.dumps({"prompt": prompt, "response": response}, indent=4))
|
130 |
print("\n***\n")
|
131 |
return result
|
132 |
+
|
elm/infer_elm_for_demo_app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, SliceX AI, Inc.
|
2 |
+
|
3 |
+
from elm.model import *
|
4 |
+
from elm.utils import batchify
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import json
|
7 |
+
|
8 |
+
|
9 |
+
def load_elm_model_and_tokenizer(local_path,
|
10 |
+
model_config_dict,
|
11 |
+
device="cuda",
|
12 |
+
load_partial=True,
|
13 |
+
get_num_layers_from_ckpt=True):
|
14 |
+
"""Load ELM model and tokenizer from local checkpoint."""
|
15 |
+
model_args = ModelArgs(**model_config_dict)
|
16 |
+
model = load_elm_model_from_ckpt(local_path, device=device, model_args=model_args, load_partial=load_partial, get_num_layers_from_ckpt=get_num_layers_from_ckpt)
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(local_path)
|
19 |
+
tokenizer.padding_side = "left"
|
20 |
+
tokenizer.truncation_side = "left"
|
21 |
+
return model, tokenizer
|
22 |
+
|
23 |
+
|
24 |
+
def generate_elm_response_given_model(prompts, model, tokenizer,
|
25 |
+
device="cuda",
|
26 |
+
max_ctx_word_len=1024,
|
27 |
+
max_ctx_token_len=0,
|
28 |
+
max_new_tokens=500,
|
29 |
+
temperature=0.8, # set to 0 for greedy decoding
|
30 |
+
top_k=200,
|
31 |
+
return_tok_cnt=False,
|
32 |
+
return_gen_only=False,
|
33 |
+
early_stop_on_eos=False):
|
34 |
+
"""Generate responses from ELM model given an input list of prompts ([str])."""
|
35 |
+
if max_ctx_token_len > 0:
|
36 |
+
inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True, max_length=max_ctx_token_len).to(device)
|
37 |
+
else:
|
38 |
+
prompts = [" ".join(p.split(" ")[-max_ctx_word_len:]) for p in prompts]
|
39 |
+
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
|
40 |
+
|
41 |
+
results = []
|
42 |
+
|
43 |
+
input_tok_cnt = torch.numel(inputs.input_ids)
|
44 |
+
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
out_tok_cnt = 0
|
48 |
+
with torch.no_grad():
|
49 |
+
temperature = temperature
|
50 |
+
top_k = top_k
|
51 |
+
|
52 |
+
outputs = model.generate(inputs.input_ids, max_new_tokens, temperature=temperature, top_k=top_k,
|
53 |
+
return_gen_only=return_gen_only)
|
54 |
+
|
55 |
+
if return_tok_cnt:
|
56 |
+
out_tok_cnt += torch.numel(outputs)
|
57 |
+
|
58 |
+
if early_stop_on_eos:
|
59 |
+
mod_outputs = []
|
60 |
+
for i in range(len(outputs)):
|
61 |
+
curr_out = outputs[i]
|
62 |
+
|
63 |
+
eos_loc_id = -1
|
64 |
+
for j in range(len(outputs[i])):
|
65 |
+
tok_id = outputs[i][j]
|
66 |
+
if tok_id == tokenizer.eos_token_id:
|
67 |
+
eos_loc_id = j
|
68 |
+
break
|
69 |
+
if eos_loc_id >= 0:
|
70 |
+
curr_out = outputs[i][:eos_loc_id]
|
71 |
+
mod_outputs.append(curr_out)
|
72 |
+
outputs = mod_outputs
|
73 |
+
detokenized_output = tokenizer.batch_decode(outputs, skip_special_tokens=False)
|
74 |
+
|
75 |
+
results = detokenized_output
|
76 |
+
|
77 |
+
if return_tok_cnt:
|
78 |
+
return results, (input_tok_cnt, out_tok_cnt)
|
79 |
+
|
80 |
+
return results
|
81 |
+
|
82 |
+
def load_elm_model_given_path(elm_model_path, elm_model_config={}, device=None):
|
83 |
+
if not device:
|
84 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
85 |
+
print(f"Setting device to {device}")
|
86 |
+
model_config_dict = {
|
87 |
+
"hidden_size": elm_model_config.get("hidden_size", 2048),
|
88 |
+
"max_inp_len": elm_model_config.get("max_inp_len", 2048),
|
89 |
+
"num_attention_heads": elm_model_config.get("num_attention_heads", 32),
|
90 |
+
"num_layers": elm_model_config.get("num_layers", 48),
|
91 |
+
"bits": elm_model_config.get("bits", 256),
|
92 |
+
"vocab_size": elm_model_config.get("vocab_size", 50304),
|
93 |
+
"dropout": elm_model_config.get("dropout", 0.1),
|
94 |
+
"use_rotary_embeddings": elm_model_config.get("use_rotary_embeddings", True)
|
95 |
+
}
|
96 |
+
|
97 |
+
model, tokenizer = load_elm_model_and_tokenizer(local_path=elm_model_path, model_config_dict=model_config_dict, device=device, load_partial=True)
|
98 |
+
return {"model": model, "tokenizer": tokenizer}
|
99 |
+
|
100 |
+
def generate_elm_responses(elm_model_path,
|
101 |
+
prompts,
|
102 |
+
device=None,
|
103 |
+
elm_model_config={},
|
104 |
+
eval_batch_size=1,
|
105 |
+
verbose=True,
|
106 |
+
model_info=None):
|
107 |
+
|
108 |
+
|
109 |
+
if not device:
|
110 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
111 |
+
print(f"Setting device to {device}")
|
112 |
+
|
113 |
+
if not model_info:
|
114 |
+
model_info = load_elm_model_given_path(elm_model_path, elm_model_config=elm_model_config, device=device)
|
115 |
+
|
116 |
+
model, tokenizer = model_info["model"], model_info["tokenizer"]
|
117 |
+
|
118 |
+
#prompts = [prompt if "[INST]" in prompt else f"[INST]{prompt}[/INST]" for prompt in prompts]
|
119 |
+
max_new_tokens = 128
|
120 |
+
if "classification" in elm_model_path or "detection" in elm_model_path:
|
121 |
+
max_new_tokens = 12
|
122 |
+
result = []
|
123 |
+
for prompt_batch in batchify(prompts, eval_batch_size):
|
124 |
+
responses, _ = generate_elm_response_given_model(prompt_batch,
|
125 |
+
model,
|
126 |
+
tokenizer,
|
127 |
+
device=device,
|
128 |
+
max_ctx_word_len=1024,
|
129 |
+
max_ctx_token_len=512,
|
130 |
+
max_new_tokens=max_new_tokens,
|
131 |
+
return_tok_cnt=True,
|
132 |
+
return_gen_only=False,
|
133 |
+
temperature=0.0,
|
134 |
+
early_stop_on_eos=True)
|
135 |
+
|
136 |
+
for prompt, response in zip(prompt_batch, responses):
|
137 |
+
response = response.split("[/INST]")[-1].strip()
|
138 |
+
result.append(response)
|
139 |
+
if verbose:
|
140 |
+
print(json.dumps({"prompt": prompt, "response": response}, indent=4))
|
141 |
+
print("\n***\n")
|
142 |
+
return result
|
143 |
+
|
elm/model.py
CHANGED
@@ -413,4 +413,4 @@ def sample_top_p(probs, threshold):
|
|
413 |
next_token = torch.multinomial(probs_sort, num_samples=1)
|
414 |
next_token = torch.gather(probs_idx, -1, next_token)
|
415 |
|
416 |
-
return next_token
|
|
|
413 |
next_token = torch.multinomial(probs_sort, num_samples=1)
|
414 |
next_token = torch.gather(probs_idx, -1, next_token)
|
415 |
|
416 |
+
return next_token
|
elm/positional_embeddings.py
CHANGED
@@ -9,8 +9,6 @@ def rotate_half(x):
|
|
9 |
|
10 |
@torch.jit.script
|
11 |
def apply_rotary_pos_emb(x, cos, sin):
|
12 |
-
# NOTE: This could probably be moved to Triton
|
13 |
-
|
14 |
# Handle a possible sequence length mismatch in between q and k
|
15 |
cos = cos[:, :, : x.shape[-2], :]
|
16 |
sin = sin[:, :, : x.shape[-2], :]
|
|
|
9 |
|
10 |
@torch.jit.script
|
11 |
def apply_rotary_pos_emb(x, cos, sin):
|
|
|
|
|
12 |
# Handle a possible sequence length mismatch in between q and k
|
13 |
cos = cos[:, :, : x.shape[-2], :]
|
14 |
sin = sin[:, :, : x.shape[-2], :]
|
elm/utils.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
-
# Copyright (c) 2024, SliceX AI, Inc.
|
2 |
|
3 |
-
from prettytable import PrettyTable
|
4 |
|
5 |
def count_parameters(model):
|
6 |
"""Count the number of parameters in the model."""
|
7 |
-
table = PrettyTable(["Modules", "Parameters"])
|
8 |
total_params = 0
|
9 |
|
10 |
for name, parameter in model.named_parameters():
|
11 |
if not parameter.requires_grad: continue
|
12 |
params = parameter.numel()
|
13 |
-
table.add_row([name, params])
|
14 |
total_params+=params
|
15 |
|
16 |
-
print(table)
|
17 |
print(f"Total Trainable Params: {total_params}")
|
18 |
-
|
19 |
return total_params
|
20 |
|
21 |
|
|
|
1 |
+
# Copyright (c) 2024, SliceX AI, Inc.
|
2 |
|
|
|
3 |
|
4 |
def count_parameters(model):
|
5 |
"""Count the number of parameters in the model."""
|
|
|
6 |
total_params = 0
|
7 |
|
8 |
for name, parameter in model.named_parameters():
|
9 |
if not parameter.requires_grad: continue
|
10 |
params = parameter.numel()
|
|
|
11 |
total_params+=params
|
12 |
|
|
|
13 |
print(f"Total Trainable Params: {total_params}")
|
|
|
14 |
return total_params
|
15 |
|
16 |
|