smanduru commited on
Commit
57b7071
·
1 Parent(s): ffaf72f

Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.43 +/- 18.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fafa05160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fafa051f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fafa05280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fafa05310>", "_build": "<function ActorCriticPolicy._build at 0x7f7fafa053a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7fafa05430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fafa054c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7fafa05550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fafa055e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fafa05670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fafa05700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7fafa040f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671605840556453047, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpBV7sK10i3ej3dOXN4tDS54467sQQCuQAAgD8AAIA/GswRPRRYtbpHicK2qx0GMBbl2rhACOA1AACAPwAAgD9oxIK+SE2EPycrqb3pz36+YPonviUxpDwAAAAAAAAAAGZEIb3DUTK6lDqeujQzNLZu0BW6s3mkNQAAgD8AAIA/AOOVvOHQrbrx3sO6c8rBtbRknrioceA5AACAPwAAgD8zF0W99ohfum5EwzqaQbw1OOcXuzX55LkAAIA/AACAPzMI5LxxDVS5AJ2FuoDEwLQmsEo6EkShOQAAgD8AAIA/ZvxevUjXkbp2SWk2JM9iMX+W4LpLNYq1AACAPwAAgD8AKAu8KcAUurWH57l//qu24punulrgGzYAAIA/AACAP2bFjL2e7qE/DnBAvgx1br4oBHa9WomCvQAAAAAAAAAA2mm7PVIA1LlaN6C7Htj4N1Ztzjvmn8C2AACAPwAAgD+zrMQ94X6NujjOSbvvzr4yoBQUuxpGZzoAAIA/AACAPwC1y7zqReg+2DL4uxFxQr7DJ3+8bttKPQAAAAAAAAAA5o4qPVxbZbrSPtQ6GkqdNSdeqrl+T/m5AACAPwAAgD8zSbs9ri2Dur4IxrzCPa84QmHUuk6gHLgAAIA/AAAAAAAcfDwpcGe6e0MautP5DLZLH325308xOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMo6R7JGpY0CUhpRSlIwBbJRN6AOMAXSUR0CQiS+M6zVudX2UKGgGaAloD0MIJ8KGp1eGY0CUhpRSlGgVTegDaBZHQJCJv/6wdKd1fZQoaAZoCWgPQwjvHMpQlehjQJSGlFKUaBVN6ANoFkdAkIpAs9SuQ3V9lChoBmgJaA9DCK5H4XoUJWNAlIaUUpRoFU3oA2gWR0CQkmYqXnhbdX2UKGgGaAloD0MIvJaQD/pCYUCUhpRSlGgVTegDaBZHQJCTB3OfNA11fZQoaAZoCWgPQwiWdmout2FiQJSGlFKUaBVN6ANoFkdAkJS/uPV/c3V9lChoBmgJaA9DCI5AvK7ftmNAlIaUUpRoFU3oA2gWR0CQnWpyp71JdX2UKGgGaAloD0MI/TOD+MDSY0CUhpRSlGgVTegDaBZHQJCe4pF1B+p1fZQoaAZoCWgPQwjfisQENV9hQJSGlFKUaBVN6ANoFkdAkJ+LWNFSbnV9lChoBmgJaA9DCB0FiIIZEmFAlIaUUpRoFU3oA2gWR0CQoSxaxHG0dX2UKGgGaAloD0MIfQVpxiJ2ZkCUhpRSlGgVTegDaBZHQJCyfB7/n4h1fZQoaAZoCWgPQwiCNjl80lJlQJSGlFKUaBVN6ANoFkdAkLtkk0JnhHV9lChoBmgJaA9DCAYujzUjCmVAlIaUUpRoFU3oA2gWR0CQvEn/1g6VdX2UKGgGaAloD0MI4PPDCOHHW0CUhpRSlGgVTegDaBZHQJC979VFQVN1fZQoaAZoCWgPQwj03hgCAMZiQJSGlFKUaBVN6ANoFkdAkL3yXdCVr3V9lChoBmgJaA9DCKGgFK1cTmJAlIaUUpRoFU3oA2gWR0CQ1yhTwUg0dX2UKGgGaAloD0MIXATG+gZMXkCUhpRSlGgVTegDaBZHQJDbNYSxqwh1fZQoaAZoCWgPQwhOKhpr/49kQJSGlFKUaBVN6ANoFkdAkNviUC7sfXV9lChoBmgJaA9DCIAqbtximFxAlIaUUpRoFU3oA2gWR0CQ3HODrZ8KdX2UKGgGaAloD0MIc0nVdhMTZECUhpRSlGgVTegDaBZHQJDnMTQE6kt1fZQoaAZoCWgPQwiRfvs68FNhQJSGlFKUaBVN6ANoFkdAkOf7WI42j3V9lChoBmgJaA9DCMoYH2YvKmJAlIaUUpRoFU3oA2gWR0CQ6jowmE5AdX2UKGgGaAloD0MIaxFRTN70YkCUhpRSlGgVTegDaBZHQJD1GrDIikh1fZQoaAZoCWgPQwiRmQtcHp5iQJSGlFKUaBVN6ANoFkdAkPbRS9/SY3V9lChoBmgJaA9DCBZNZyeDgFpAlIaUUpRoFU3oA2gWR0CQ95oBaLXMdX2UKGgGaAloD0MI7PoFu2FnWUCUhpRSlGgVTegDaBZHQJD5eObRWtF1fZQoaAZoCWgPQwgCgjl6fIVgQJSGlFKUaBVN6ANoFkdAkQswbp/wzHV9lChoBmgJaA9DCKNaRBQTJWJAlIaUUpRoFU3oA2gWR0CRE8RAbADadX2UKGgGaAloD0MIPiMRGsG8YUCUhpRSlGgVTegDaBZHQJEUlT/ACXB1fZQoaAZoCWgPQwg4ns+AetxiQJSGlFKUaBVN6ANoFkdAkRYVjd56dHV9lChoBmgJaA9DCFLuPsdHd15AlIaUUpRoFU3oA2gWR0CRFhedCmdidX2UKGgGaAloD0MIFRvzOuLfXECUhpRSlGgVTegDaBZHQJEb3WpZOi51fZQoaAZoCWgPQwhFK/cCs59iQJSGlFKUaBVN6ANoFkdAkTIfVRUFS3V9lChoBmgJaA9DCLk16bZEIFhAlIaUUpRoFU3oA2gWR0CRMq9WIXTFdX2UKGgGaAloD0MIukkMAivMX0CUhpRSlGgVTegDaBZHQJEzJH5Jsft1fZQoaAZoCWgPQwgFajF4GE9kQJSGlFKUaBVN6ANoFkdAkTwfBi1Aq3V9lChoBmgJaA9DCMzs8xjlnF9AlIaUUpRoFU3oA2gWR0CRPM5MlC1JdX2UKGgGaAloD0MIiNUfYRi8YECUhpRSlGgVTegDaBZHQJE+yyt3fQ91fZQoaAZoCWgPQwjlDTDzHaxKQJSGlFKUaBVNTgFoFkdAkUcn9R77bnV9lChoBmgJaA9DCBvXv+uzKWRAlIaUUpRoFU3oA2gWR0CRSUMMZxaQdX2UKGgGaAloD0MIdm9FYoLVYUCUhpRSlGgVTegDaBZHQJFK66g/Tsp1fZQoaAZoCWgPQwhSD9HojjtgQJSGlFKUaBVN6ANoFkdAkUub+Lm6oXV9lChoBmgJaA9DCMVx4NXyT2FAlIaUUpRoFU3oA2gWR0CRTWouPFNtdX2UKGgGaAloD0MIB+3Vx0OHZUCUhpRSlGgVTegDaBZHQJFfYYP5HmR1fZQoaAZoCWgPQwh/aydKQrxXQJSGlFKUaBVN6ANoFkdAkWiXpbD/EXV9lChoBmgJaA9DCJNTO8PU/F1AlIaUUpRoFU3oA2gWR0CRaYbHIZIhdX2UKGgGaAloD0MIuB6F61FYYkCUhpRSlGgVTegDaBZHQJFrPJRwZO11fZQoaAZoCWgPQwi/f/PixAtdQJSGlFKUaBVN6ANoFkdAkWs/CMxXXHV9lChoBmgJaA9DCGFSfHzCuGJAlIaUUpRoFU3oA2gWR0CRcYIGyHEddX2UKGgGaAloD0MIuk24V+ZyZECUhpRSlGgVTegDaBZHQJGISscQyyl1fZQoaAZoCWgPQwha9iSwuVphQJSGlFKUaBVN6ANoFkdAkYmB2St/4XV9lChoBmgJaA9DCBeARunS/ztAlIaUUpRoFU0aAWgWR0CRjnr7O3UhdX2UKGgGaAloD0MIrFj8prBYQUCUhpRSlGgVTVkBaBZHQJGTY8KXv6V1fZQoaAZoCWgPQwiPcFrwonFjQJSGlFKUaBVN6ANoFkdAkZPZZKWcBnV9lChoBmgJaA9DCCECDqFKr0FAlIaUUpRoFU1RAWgWR0CRlEkd3jdYdX2UKGgGaAloD0MIKJmc2hkHZECUhpRSlGgVTegDaBZHQJGUiSW7e2x1fZQoaAZoCWgPQwhgsBu2LVRiQJSGlFKUaBVN6ANoFkdAkZZj4pMHr3V9lChoBmgJaA9DCAltOZfirEBAlIaUUpRoFU0gAWgWR0CRmyozN2TxdX2UKGgGaAloD0MI3GW/7nRyZECUhpRSlGgVTegDaBZHQJGdSAFxGUh1fZQoaAZoCWgPQwjIXYQpytdaQJSGlFKUaBVN6ANoFkdAkZ79vCMxXXV9lChoBmgJaA9DCDY9KChFMGBAlIaUUpRoFU3oA2gWR0CRoETyJ9ApdX2UKGgGaAloD0MIHCWvzjG8YkCUhpRSlGgVTegDaBZHQJGgz2Dg62h1fZQoaAZoCWgPQwhfmiLA6bFXQJSGlFKUaBVN6ANoFkdAkaI8LORkmXV9lChoBmgJaA9DCGb0o+GUhUFAlIaUUpRoFU1AAWgWR0CRpaaZQYUGdX2UKGgGaAloD0MINLxZg/fOYECUhpRSlGgVTegDaBZHQJGw8M1CPZJ1fZQoaAZoCWgPQwgFie3ugXVkQJSGlFKUaBVN6ANoFkdAkbtaMBIWg3V9lChoBmgJaA9DCLwDPGlhVGJAlIaUUpRoFU3oA2gWR0CRwmsw+MZQdX2UKGgGaAloD0MILEgzFk0jW0CUhpRSlGgVTegDaBZHQJHZGFEiMYN1fZQoaAZoCWgPQwixNPCjGlddQJSGlFKUaBVN6ANoFkdAkd93xJ/XoXV9lChoBmgJaA9DCA0dO6jEiltAlIaUUpRoFU3oA2gWR0CR5Fp9qk/KdX2UKGgGaAloD0MI9wSJ7e4EXUCUhpRSlGgVTegDaBZHQJHkzQ1JlJ91fZQoaAZoCWgPQwhCJEOOrZxcQJSGlFKUaBVN6ANoFkdAkeU/ywwCbXV9lChoBmgJaA9DCCzWcJF7mGFAlIaUUpRoFU3oA2gWR0CR52e4Cp3pdX2UKGgGaAloD0MIj6UPXVBEY0CUhpRSlGgVTegDaBZHQJHsg4CIUJx1fZQoaAZoCWgPQwgQCHQmbb1rQJSGlFKUaBVN3QNoFkdAke57ApKBd3V9lChoBmgJaA9DCOSghJm2TFlAlIaUUpRoFU3oA2gWR0CR8YuG9HtndX2UKGgGaAloD0MIOSaL+4+3XUCUhpRSlGgVTegDaBZHQJHzO4oZydZ1fZQoaAZoCWgPQwjElEiiFzhhQJSGlFKUaBVN6ANoFkdAkfQIBvJiiXV9lChoBmgJaA9DCJYkz/V91VpAlIaUUpRoFU3oA2gWR0CR9eHNX5nEdX2UKGgGaAloD0MINzgR/dq/ZUCUhpRSlGgVTegDaBZHQJH6OKuSwGJ1fZQoaAZoCWgPQwhPH4E//DtiQJSGlFKUaBVN6ANoFkdAkgTFjd56dHV9lChoBmgJaA9DCMpUwaikoWRAlIaUUpRoFU3oA2gWR0CSDeVENOM3dX2UKGgGaAloD0MI+U7MejGhZECUhpRSlGgVTegDaBZHQJIUKLYPGyZ1fZQoaAZoCWgPQwjdQlciULFeQJSGlFKUaBVN6ANoFkdAkhgKjzqbB3V9lChoBmgJaA9DCM9nQL2ZDGZAlIaUUpRoFU3oA2gWR0CSMM9b5dnkdX2UKGgGaAloD0MIpS4Zx0j+YUCUhpRSlGgVTegDaBZHQJI1hrZamoB1fZQoaAZoCWgPQwjZz2IpkitaQJSGlFKUaBVN6ANoFkdAkjX7PldTpHV9lChoBmgJaA9DCHL9uz7zeWFAlIaUUpRoFU3oA2gWR0CSNnIMjNY9dX2UKGgGaAloD0MIWwpI+59IY0CUhpRSlGgVTegDaBZHQJI4wokRjBl1fZQoaAZoCWgPQwjuQQjIF/tgQJSGlFKUaBVN6ANoFkdAkj3++23KCHV9lChoBmgJaA9DCNdtUPstMmNAlIaUUpRoFU3oA2gWR0CSP4HXVbzLdX2UKGgGaAloD0MIavgW1o2NWkCUhpRSlGgVTegDaBZHQJJB5F8XvYx1fZQoaAZoCWgPQwhdbcX+MqdiQJSGlFKUaBVN6ANoFkdAkkM/3vhIfHV9lChoBmgJaA9DCKGA7WDEIF5AlIaUUpRoFU3oA2gWR0CSQ9akRBeHdX2UKGgGaAloD0MIU5PgDemPYUCUhpRSlGgVTegDaBZHQJJFUp2ECeV1fZQoaAZoCWgPQwgz+WabmwxhQJSGlFKUaBVN6ANoFkdAkki3pGFzuHV9lChoBmgJaA9DCLag98aQPGFAlIaUUpRoFU3oA2gWR0CSU+PoV2zOdX2UKGgGaAloD0MInMJKBZUMYUCUhpRSlGgVTegDaBZHQJJeEa72+PB1fZQoaAZoCWgPQwgep+hILklfQJSGlFKUaBVN6ANoFkdAkmSDdP+GXXV9lChoBmgJaA9DCLSwpx1+lmBAlIaUUpRoFU3oA2gWR0CSaGu3trsTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-sman.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc2fb867672d539ee73c64dc0e29fa901e4471a0c27af3d145202d61652e4fa
3
+ size 147218
ppo-LunarLander-sman/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-sman/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fafa05160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fafa051f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fafa05280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fafa05310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7fafa053a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7fafa05430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fafa054c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7fafa05550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fafa055e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fafa05670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fafa05700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7fafa040f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671605840556453047,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpBV7sK10i3ej3dOXN4tDS54467sQQCuQAAgD8AAIA/GswRPRRYtbpHicK2qx0GMBbl2rhACOA1AACAPwAAgD9oxIK+SE2EPycrqb3pz36+YPonviUxpDwAAAAAAAAAAGZEIb3DUTK6lDqeujQzNLZu0BW6s3mkNQAAgD8AAIA/AOOVvOHQrbrx3sO6c8rBtbRknrioceA5AACAPwAAgD8zF0W99ohfum5EwzqaQbw1OOcXuzX55LkAAIA/AACAPzMI5LxxDVS5AJ2FuoDEwLQmsEo6EkShOQAAgD8AAIA/ZvxevUjXkbp2SWk2JM9iMX+W4LpLNYq1AACAPwAAgD8AKAu8KcAUurWH57l//qu24punulrgGzYAAIA/AACAP2bFjL2e7qE/DnBAvgx1br4oBHa9WomCvQAAAAAAAAAA2mm7PVIA1LlaN6C7Htj4N1Ztzjvmn8C2AACAPwAAgD+zrMQ94X6NujjOSbvvzr4yoBQUuxpGZzoAAIA/AACAPwC1y7zqReg+2DL4uxFxQr7DJ3+8bttKPQAAAAAAAAAA5o4qPVxbZbrSPtQ6GkqdNSdeqrl+T/m5AACAPwAAgD8zSbs9ri2Dur4IxrzCPa84QmHUuk6gHLgAAIA/AAAAAAAcfDwpcGe6e0MautP5DLZLH325308xOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMo6R7JGpY0CUhpRSlIwBbJRN6AOMAXSUR0CQiS+M6zVudX2UKGgGaAloD0MIJ8KGp1eGY0CUhpRSlGgVTegDaBZHQJCJv/6wdKd1fZQoaAZoCWgPQwjvHMpQlehjQJSGlFKUaBVN6ANoFkdAkIpAs9SuQ3V9lChoBmgJaA9DCK5H4XoUJWNAlIaUUpRoFU3oA2gWR0CQkmYqXnhbdX2UKGgGaAloD0MIvJaQD/pCYUCUhpRSlGgVTegDaBZHQJCTB3OfNA11fZQoaAZoCWgPQwiWdmout2FiQJSGlFKUaBVN6ANoFkdAkJS/uPV/c3V9lChoBmgJaA9DCI5AvK7ftmNAlIaUUpRoFU3oA2gWR0CQnWpyp71JdX2UKGgGaAloD0MI/TOD+MDSY0CUhpRSlGgVTegDaBZHQJCe4pF1B+p1fZQoaAZoCWgPQwjfisQENV9hQJSGlFKUaBVN6ANoFkdAkJ+LWNFSbnV9lChoBmgJaA9DCB0FiIIZEmFAlIaUUpRoFU3oA2gWR0CQoSxaxHG0dX2UKGgGaAloD0MIfQVpxiJ2ZkCUhpRSlGgVTegDaBZHQJCyfB7/n4h1fZQoaAZoCWgPQwiCNjl80lJlQJSGlFKUaBVN6ANoFkdAkLtkk0JnhHV9lChoBmgJaA9DCAYujzUjCmVAlIaUUpRoFU3oA2gWR0CQvEn/1g6VdX2UKGgGaAloD0MI4PPDCOHHW0CUhpRSlGgVTegDaBZHQJC979VFQVN1fZQoaAZoCWgPQwj03hgCAMZiQJSGlFKUaBVN6ANoFkdAkL3yXdCVr3V9lChoBmgJaA9DCKGgFK1cTmJAlIaUUpRoFU3oA2gWR0CQ1yhTwUg0dX2UKGgGaAloD0MIXATG+gZMXkCUhpRSlGgVTegDaBZHQJDbNYSxqwh1fZQoaAZoCWgPQwhOKhpr/49kQJSGlFKUaBVN6ANoFkdAkNviUC7sfXV9lChoBmgJaA9DCIAqbtximFxAlIaUUpRoFU3oA2gWR0CQ3HODrZ8KdX2UKGgGaAloD0MIc0nVdhMTZECUhpRSlGgVTegDaBZHQJDnMTQE6kt1fZQoaAZoCWgPQwiRfvs68FNhQJSGlFKUaBVN6ANoFkdAkOf7WI42j3V9lChoBmgJaA9DCMoYH2YvKmJAlIaUUpRoFU3oA2gWR0CQ6jowmE5AdX2UKGgGaAloD0MIaxFRTN70YkCUhpRSlGgVTegDaBZHQJD1GrDIikh1fZQoaAZoCWgPQwiRmQtcHp5iQJSGlFKUaBVN6ANoFkdAkPbRS9/SY3V9lChoBmgJaA9DCBZNZyeDgFpAlIaUUpRoFU3oA2gWR0CQ95oBaLXMdX2UKGgGaAloD0MI7PoFu2FnWUCUhpRSlGgVTegDaBZHQJD5eObRWtF1fZQoaAZoCWgPQwgCgjl6fIVgQJSGlFKUaBVN6ANoFkdAkQswbp/wzHV9lChoBmgJaA9DCKNaRBQTJWJAlIaUUpRoFU3oA2gWR0CRE8RAbADadX2UKGgGaAloD0MIPiMRGsG8YUCUhpRSlGgVTegDaBZHQJEUlT/ACXB1fZQoaAZoCWgPQwg4ns+AetxiQJSGlFKUaBVN6ANoFkdAkRYVjd56dHV9lChoBmgJaA9DCFLuPsdHd15AlIaUUpRoFU3oA2gWR0CRFhedCmdidX2UKGgGaAloD0MIFRvzOuLfXECUhpRSlGgVTegDaBZHQJEb3WpZOi51fZQoaAZoCWgPQwhFK/cCs59iQJSGlFKUaBVN6ANoFkdAkTIfVRUFS3V9lChoBmgJaA9DCLk16bZEIFhAlIaUUpRoFU3oA2gWR0CRMq9WIXTFdX2UKGgGaAloD0MIukkMAivMX0CUhpRSlGgVTegDaBZHQJEzJH5Jsft1fZQoaAZoCWgPQwgFajF4GE9kQJSGlFKUaBVN6ANoFkdAkTwfBi1Aq3V9lChoBmgJaA9DCMzs8xjlnF9AlIaUUpRoFU3oA2gWR0CRPM5MlC1JdX2UKGgGaAloD0MIiNUfYRi8YECUhpRSlGgVTegDaBZHQJE+yyt3fQ91fZQoaAZoCWgPQwjlDTDzHaxKQJSGlFKUaBVNTgFoFkdAkUcn9R77bnV9lChoBmgJaA9DCBvXv+uzKWRAlIaUUpRoFU3oA2gWR0CRSUMMZxaQdX2UKGgGaAloD0MIdm9FYoLVYUCUhpRSlGgVTegDaBZHQJFK66g/Tsp1fZQoaAZoCWgPQwhSD9HojjtgQJSGlFKUaBVN6ANoFkdAkUub+Lm6oXV9lChoBmgJaA9DCMVx4NXyT2FAlIaUUpRoFU3oA2gWR0CRTWouPFNtdX2UKGgGaAloD0MIB+3Vx0OHZUCUhpRSlGgVTegDaBZHQJFfYYP5HmR1fZQoaAZoCWgPQwh/aydKQrxXQJSGlFKUaBVN6ANoFkdAkWiXpbD/EXV9lChoBmgJaA9DCJNTO8PU/F1AlIaUUpRoFU3oA2gWR0CRaYbHIZIhdX2UKGgGaAloD0MIuB6F61FYYkCUhpRSlGgVTegDaBZHQJFrPJRwZO11fZQoaAZoCWgPQwi/f/PixAtdQJSGlFKUaBVN6ANoFkdAkWs/CMxXXHV9lChoBmgJaA9DCGFSfHzCuGJAlIaUUpRoFU3oA2gWR0CRcYIGyHEddX2UKGgGaAloD0MIuk24V+ZyZECUhpRSlGgVTegDaBZHQJGISscQyyl1fZQoaAZoCWgPQwha9iSwuVphQJSGlFKUaBVN6ANoFkdAkYmB2St/4XV9lChoBmgJaA9DCBeARunS/ztAlIaUUpRoFU0aAWgWR0CRjnr7O3UhdX2UKGgGaAloD0MIrFj8prBYQUCUhpRSlGgVTVkBaBZHQJGTY8KXv6V1fZQoaAZoCWgPQwiPcFrwonFjQJSGlFKUaBVN6ANoFkdAkZPZZKWcBnV9lChoBmgJaA9DCCECDqFKr0FAlIaUUpRoFU1RAWgWR0CRlEkd3jdYdX2UKGgGaAloD0MIKJmc2hkHZECUhpRSlGgVTegDaBZHQJGUiSW7e2x1fZQoaAZoCWgPQwhgsBu2LVRiQJSGlFKUaBVN6ANoFkdAkZZj4pMHr3V9lChoBmgJaA9DCAltOZfirEBAlIaUUpRoFU0gAWgWR0CRmyozN2TxdX2UKGgGaAloD0MI3GW/7nRyZECUhpRSlGgVTegDaBZHQJGdSAFxGUh1fZQoaAZoCWgPQwjIXYQpytdaQJSGlFKUaBVN6ANoFkdAkZ79vCMxXXV9lChoBmgJaA9DCDY9KChFMGBAlIaUUpRoFU3oA2gWR0CRoETyJ9ApdX2UKGgGaAloD0MIHCWvzjG8YkCUhpRSlGgVTegDaBZHQJGgz2Dg62h1fZQoaAZoCWgPQwhfmiLA6bFXQJSGlFKUaBVN6ANoFkdAkaI8LORkmXV9lChoBmgJaA9DCGb0o+GUhUFAlIaUUpRoFU1AAWgWR0CRpaaZQYUGdX2UKGgGaAloD0MINLxZg/fOYECUhpRSlGgVTegDaBZHQJGw8M1CPZJ1fZQoaAZoCWgPQwgFie3ugXVkQJSGlFKUaBVN6ANoFkdAkbtaMBIWg3V9lChoBmgJaA9DCLwDPGlhVGJAlIaUUpRoFU3oA2gWR0CRwmsw+MZQdX2UKGgGaAloD0MILEgzFk0jW0CUhpRSlGgVTegDaBZHQJHZGFEiMYN1fZQoaAZoCWgPQwixNPCjGlddQJSGlFKUaBVN6ANoFkdAkd93xJ/XoXV9lChoBmgJaA9DCA0dO6jEiltAlIaUUpRoFU3oA2gWR0CR5Fp9qk/KdX2UKGgGaAloD0MI9wSJ7e4EXUCUhpRSlGgVTegDaBZHQJHkzQ1JlJ91fZQoaAZoCWgPQwhCJEOOrZxcQJSGlFKUaBVN6ANoFkdAkeU/ywwCbXV9lChoBmgJaA9DCCzWcJF7mGFAlIaUUpRoFU3oA2gWR0CR52e4Cp3pdX2UKGgGaAloD0MIj6UPXVBEY0CUhpRSlGgVTegDaBZHQJHsg4CIUJx1fZQoaAZoCWgPQwgQCHQmbb1rQJSGlFKUaBVN3QNoFkdAke57ApKBd3V9lChoBmgJaA9DCOSghJm2TFlAlIaUUpRoFU3oA2gWR0CR8YuG9HtndX2UKGgGaAloD0MIOSaL+4+3XUCUhpRSlGgVTegDaBZHQJHzO4oZydZ1fZQoaAZoCWgPQwjElEiiFzhhQJSGlFKUaBVN6ANoFkdAkfQIBvJiiXV9lChoBmgJaA9DCJYkz/V91VpAlIaUUpRoFU3oA2gWR0CR9eHNX5nEdX2UKGgGaAloD0MINzgR/dq/ZUCUhpRSlGgVTegDaBZHQJH6OKuSwGJ1fZQoaAZoCWgPQwhPH4E//DtiQJSGlFKUaBVN6ANoFkdAkgTFjd56dHV9lChoBmgJaA9DCMpUwaikoWRAlIaUUpRoFU3oA2gWR0CSDeVENOM3dX2UKGgGaAloD0MI+U7MejGhZECUhpRSlGgVTegDaBZHQJIUKLYPGyZ1fZQoaAZoCWgPQwjdQlciULFeQJSGlFKUaBVN6ANoFkdAkhgKjzqbB3V9lChoBmgJaA9DCM9nQL2ZDGZAlIaUUpRoFU3oA2gWR0CSMM9b5dnkdX2UKGgGaAloD0MIpS4Zx0j+YUCUhpRSlGgVTegDaBZHQJI1hrZamoB1fZQoaAZoCWgPQwjZz2IpkitaQJSGlFKUaBVN6ANoFkdAkjX7PldTpHV9lChoBmgJaA9DCHL9uz7zeWFAlIaUUpRoFU3oA2gWR0CSNnIMjNY9dX2UKGgGaAloD0MIWwpI+59IY0CUhpRSlGgVTegDaBZHQJI4wokRjBl1fZQoaAZoCWgPQwjuQQjIF/tgQJSGlFKUaBVN6ANoFkdAkj3++23KCHV9lChoBmgJaA9DCNdtUPstMmNAlIaUUpRoFU3oA2gWR0CSP4HXVbzLdX2UKGgGaAloD0MIavgW1o2NWkCUhpRSlGgVTegDaBZHQJJB5F8XvYx1fZQoaAZoCWgPQwhdbcX+MqdiQJSGlFKUaBVN6ANoFkdAkkM/3vhIfHV9lChoBmgJaA9DCKGA7WDEIF5AlIaUUpRoFU3oA2gWR0CSQ9akRBeHdX2UKGgGaAloD0MIU5PgDemPYUCUhpRSlGgVTegDaBZHQJJFUp2ECeV1fZQoaAZoCWgPQwgz+WabmwxhQJSGlFKUaBVN6ANoFkdAkki3pGFzuHV9lChoBmgJaA9DCLag98aQPGFAlIaUUpRoFU3oA2gWR0CSU+PoV2zOdX2UKGgGaAloD0MInMJKBZUMYUCUhpRSlGgVTegDaBZHQJJeEa72+PB1fZQoaAZoCWgPQwgep+hILklfQJSGlFKUaBVN6ANoFkdAkmSDdP+GXXV9lChoBmgJaA9DCLSwpx1+lmBAlIaUUpRoFU3oA2gWR0CSaGu3trsTdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-sman/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c24c17d02643ba796a0b9b81f809a5d27063b011f9967f866177c9fb4b195127
3
+ size 87929
ppo-LunarLander-sman/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f262513ae2e8c20a6edba5f6cd3f61100907d4cb9134d0d1253eb59521423714
3
+ size 43201
ppo-LunarLander-sman/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-sman/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (222 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.4325088849061, "std_reward": 18.541665165123753, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T07:22:09.941690"}