farmery commited on
Commit
8331b9c
·
verified ·
1 Parent(s): f2cfcce

End of training

Browse files
Files changed (2) hide show
  1. README.md +168 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: katuni4ka/tiny-random-falcon-40b
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 71bfbe0d-d239-4a6b-8db9-b8f18f2d83f0
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: katuni4ka/tiny-random-falcon-40b
22
+ bf16: auto
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 3d7c4772132891a3_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/3d7c4772132891a3_train_data.json
31
+ type:
32
+ field_instruction: instruction
33
+ field_output: response
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ early_stopping_patience: null
41
+ eval_max_new_tokens: 128
42
+ eval_steps: null
43
+ eval_table_size: null
44
+ flash_attention: false
45
+ fp16: false
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 4
49
+ gradient_checkpointing: true
50
+ group_by_length: true
51
+ hub_model_id: sn56m5/71bfbe0d-d239-4a6b-8db9-b8f18f2d83f0
52
+ hub_repo: null
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 0.0001
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 1
60
+ lora_alpha: 64
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_modules_to_save:
65
+ - embed_tokens
66
+ - lm_head
67
+ lora_r: 32
68
+ lora_target_linear: true
69
+ lora_target_modules:
70
+ - gate_proj
71
+ - down_proj
72
+ - up_proj
73
+ - q_proj
74
+ - v_proj
75
+ - k_proj
76
+ - o_proj
77
+ lr_scheduler: cosine
78
+ max_memory:
79
+ 0: 70GB
80
+ micro_batch_size: 4
81
+ mlflow_experiment_name: /tmp/3d7c4772132891a3_train_data.json
82
+ model_type: AutoModelForCausalLM
83
+ num_epochs: 1
84
+ optim_args:
85
+ adam_beta1: 0.9
86
+ adam_beta2: 0.95
87
+ adam_epsilon: 1e-5
88
+ optimizer: adamw_torch
89
+ output_dir: miner_id_24
90
+ pad_to_sequence_len: true
91
+ resume_from_checkpoint: null
92
+ s2_attention: null
93
+ sample_packing: false
94
+ save_steps: 239
95
+ sequence_len: 512
96
+ special_tokens:
97
+ pad_token: <|endoftext|>
98
+ strict: false
99
+ tf32: false
100
+ tokenizer_type: AutoTokenizer
101
+ train_on_inputs: false
102
+ trust_remote_code: true
103
+ val_set_size: 0.05
104
+ wandb_entity: sn56-miner
105
+ wandb_mode: disabled
106
+ wandb_name: 71bfbe0d-d239-4a6b-8db9-b8f18f2d83f0
107
+ wandb_project: god
108
+ wandb_run: ykc0
109
+ wandb_runid: 71bfbe0d-d239-4a6b-8db9-b8f18f2d83f0
110
+ warmup_steps: 100
111
+ weight_decay: 0.1
112
+ xformers_attention: true
113
+
114
+ ```
115
+
116
+ </details><br>
117
+
118
+ # 71bfbe0d-d239-4a6b-8db9-b8f18f2d83f0
119
+
120
+ This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset.
121
+ It achieves the following results on the evaluation set:
122
+ - Loss: 8.7119
123
+
124
+ ## Model description
125
+
126
+ More information needed
127
+
128
+ ## Intended uses & limitations
129
+
130
+ More information needed
131
+
132
+ ## Training and evaluation data
133
+
134
+ More information needed
135
+
136
+ ## Training procedure
137
+
138
+ ### Training hyperparameters
139
+
140
+ The following hyperparameters were used during training:
141
+ - learning_rate: 0.0001
142
+ - train_batch_size: 4
143
+ - eval_batch_size: 4
144
+ - seed: 42
145
+ - distributed_type: multi-GPU
146
+ - num_devices: 4
147
+ - gradient_accumulation_steps: 4
148
+ - total_train_batch_size: 64
149
+ - total_eval_batch_size: 16
150
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
151
+ - lr_scheduler_type: cosine
152
+ - lr_scheduler_warmup_steps: 100
153
+ - num_epochs: 1
154
+
155
+ ### Training results
156
+
157
+ | Training Loss | Epoch | Step | Validation Loss |
158
+ |:-------------:|:------:|:----:|:---------------:|
159
+ | 36.3952 | 0.9988 | 620 | 8.7119 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.13.2
165
+ - Transformers 4.46.0
166
+ - Pytorch 2.5.0+cu124
167
+ - Datasets 3.0.1
168
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b64f1e8658fef6be000b156bc3a4e3b2ee802741e228bfd09c282f8719d11faa
3
+ size 17144289