snunlp commited on
Commit
a1c0622
·
verified ·
1 Parent(s): cbe7ba1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,471 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ko
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:11668
11
+ - loss:CosineSimilarityLoss
12
+ datasets:
13
+ - klue/klue
14
+ metrics:
15
+ - pearson_cosine
16
+ - spearman_cosine
17
+ - pearson_manhattan
18
+ - spearman_manhattan
19
+ - pearson_euclidean
20
+ - spearman_euclidean
21
+ - pearson_dot
22
+ - spearman_dot
23
+ - pearson_max
24
+ - spearman_max
25
+ widget:
26
+ - source_sentence: 이는 지난 15일 개최된 제1차 주요국 외교장관간 협의에 뒤이은 것이다.
27
+ sentences:
28
+ - 100일간의 유럽 여행 중 단연 최고의 숙소였습니다!
29
+ - 이것은 7월 15일에 열린 주요 국가의 외무 장관들 간의 첫 번째 회담에 이은 것입니다.
30
+ - 거실옆 작은 방에도 싱글 침대가 두개 있습니다.
31
+ - source_sentence: 3000만원 이하 소액대출은 지역신용보증재단 심사를 기업은행에 위탁하기로 했다.
32
+ sentences:
33
+ - 그 집은 두 사람이 살기에 충분히 크고 깨끗했습니다.
34
+ - 3,000만원 미만의 소규모 대출은 기업은행에 의해 국내 신용보증재단을 검토하도록 의뢰될 것입니다.
35
+ - 지하철, 버스, 기차 모두 편리했습니다.
36
+ - source_sentence: 공간은 4명의 성인 가족이 사용하기에 부족함이 없었고.
37
+ sentences:
38
+ - 특히 모든 부처 장관들이 책상이 아닌 현장에서 직접 방역과 민생 경제의 중심에 서 주시기 바랍니다.
39
+ - 구시가까지 걸어서 15분 정도 걸립니다.
40
+ - 그 공간은 4인 가족에게는 충분하지 않았습니다.
41
+ - source_sentence: 클락키까지 걸어서 10분 정도 걸려요.
42
+ sentences:
43
+ - 가족 여행이나 4명정도 같이 가는 일행은 정말 좋은 곳 같아요
44
+ - 외출 시 방범 모드는 어떻게 바꿔?
45
+ - 타이페이 메인 역까지 걸어서 10분 정도 걸립니다.
46
+ - source_sentence: SR은 동대구·김천구미·신경주역에서 승하차하는 모든 국민에게 운임 10%를 할인해 준다.
47
+ sentences:
48
+ - 그 방은 두 사람이 쓰기에는 조금 좁아요.
49
+ - 수강신청 하는 날짜가 어느 날짜인지 아시는지요?
50
+ - SR은 동대구역, 김천구미역, 신주역을 오가는 모든 승객을 대상으로 요금을 10% 할인해 드립니다.
51
+ pipeline_tag: sentence-similarity
52
+ model-index:
53
+ - name: SentenceTransformer
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts dev
60
+ type: sts-dev
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.8423082829850602
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.8421532006158673
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.8160367390495141
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.8190120467928964
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.8155293657289817
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.8181098597355426
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.7792779317567364
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.7861496535827294
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.8423082829850602
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.8421532006158673
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # SentenceTransformer
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [klue/klue](https://huggingface.co/datasets/klue/klue) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
103
+ - **Maximum Sequence Length:** 512 tokens
104
+ - **Output Dimensionality:** 1024 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ - **Training Dataset:**
107
+ - [klue/klue](https://huggingface.co/datasets/klue/klue)
108
+ - **Language:** ko
109
+ <!-- - **License:** Unknown -->
110
+
111
+ ### Model Sources
112
+
113
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
114
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
115
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
116
+
117
+ ### Full Model Architecture
118
+
119
+ ```
120
+ SentenceTransformer(
121
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
122
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("snunlp/KLUE-SRoBERTa-Large-SNUExtended-klueNLI-klueSTS")
142
+ # Run inference
143
+ sentences = [
144
+ 'SR은 동대구·김천구미·신경주역에서 승하차하는 모든 국민에게 운임 10%를 할인해 준다.',
145
+ 'SR은 동대구역, 김천구미역, 신주역을 오가는 모든 승객을 대상으로 요금을 10% 할인해 드립니다.',
146
+ '수강신청 하는 날짜가 어느 날짜인지 아시는지요?',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 1024]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+ * Dataset: `sts-dev`
188
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:--------------------|:-----------|
192
+ | pearson_cosine | 0.8423 |
193
+ | **spearman_cosine** | **0.8422** |
194
+ | pearson_manhattan | 0.816 |
195
+ | spearman_manhattan | 0.819 |
196
+ | pearson_euclidean | 0.8155 |
197
+ | spearman_euclidean | 0.8181 |
198
+ | pearson_dot | 0.7793 |
199
+ | spearman_dot | 0.7861 |
200
+ | pearson_max | 0.8423 |
201
+ | spearman_max | 0.8422 |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Dataset
218
+
219
+ #### klue/klue
220
+
221
+ * Dataset: [klue/klue](https://huggingface.co/datasets/klue/klue) at [349481e](https://huggingface.co/datasets/klue/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
222
+ * Size: 11,668 training samples
223
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | sentence1 | sentence2 | label |
226
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
227
+ | type | string | string | float |
228
+ | details | <ul><li>min: 8 tokens</li><li>mean: 22.48 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 21.92 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
229
+ * Samples:
230
+ | sentence1 | sentence2 | label |
231
+ |:-----------------------------------------------------------|:--------------------------------------------------------|:---------------------------------|
232
+ | <code>숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.</code> | <code>숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.</code> | <code>0.7428571428571428</code> |
233
+ | <code>위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다.</code> | <code>시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다.</code> | <code>0.0</code> |
234
+ | <code>회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘.</code> | <code>사람들이 주로 네이버 메일을 쓰는 이유를 알려줘</code> | <code>0.06666666666666667</code> |
235
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
236
+ ```json
237
+ {
238
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
239
+ }
240
+ ```
241
+
242
+ ### Evaluation Dataset
243
+
244
+ #### klue/klue
245
+
246
+ * Dataset: [klue/klue](https://huggingface.co/datasets/klue/klue) at [349481e](https://huggingface.co/datasets/klue/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
247
+ * Size: 519 evaluation samples
248
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
249
+ * Approximate statistics based on the first 1000 samples:
250
+ | | sentence1 | sentence2 | label |
251
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
252
+ | type | string | string | float |
253
+ | details | <ul><li>min: 8 tokens</li><li>mean: 22.45 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.86 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
254
+ * Samples:
255
+ | sentence1 | sentence2 | label |
256
+ |:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:---------------------------------|
257
+ | <code>무엇보다도 호스트분들이 너무 친절하셨습니다.</code> | <code>무엇보다도, 호스트들은 매우 친절했습니다.</code> | <code>0.9714285714285713</code> |
258
+ | <code>주요 관광지 모두 걸어서 이동가능합니다.</code> | <code>위치는 피렌체 중심가까지 걸어서 이동 가능합니다.</code> | <code>0.2857142857142858</code> |
259
+ | <code>학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다.</code> | <code>영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다.</code> | <code>0.25714285714285723</code> |
260
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
261
+ ```json
262
+ {
263
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
264
+ }
265
+ ```
266
+
267
+ ### Training Hyperparameters
268
+ #### Non-Default Hyperparameters
269
+
270
+ - `eval_strategy`: steps
271
+ - `per_device_train_batch_size`: 32
272
+ - `per_device_eval_batch_size`: 32
273
+ - `num_train_epochs`: 10
274
+ - `warmup_ratio`: 0.1
275
+ - `fp16`: True
276
+ - `load_best_model_at_end`: True
277
+
278
+ #### All Hyperparameters
279
+ <details><summary>Click to expand</summary>
280
+
281
+ - `overwrite_output_dir`: False
282
+ - `do_predict`: False
283
+ - `eval_strategy`: steps
284
+ - `prediction_loss_only`: True
285
+ - `per_device_train_batch_size`: 32
286
+ - `per_device_eval_batch_size`: 32
287
+ - `per_gpu_train_batch_size`: None
288
+ - `per_gpu_eval_batch_size`: None
289
+ - `gradient_accumulation_steps`: 1
290
+ - `eval_accumulation_steps`: None
291
+ - `learning_rate`: 5e-05
292
+ - `weight_decay`: 0.0
293
+ - `adam_beta1`: 0.9
294
+ - `adam_beta2`: 0.999
295
+ - `adam_epsilon`: 1e-08
296
+ - `max_grad_norm`: 1.0
297
+ - `num_train_epochs`: 10
298
+ - `max_steps`: -1
299
+ - `lr_scheduler_type`: linear
300
+ - `lr_scheduler_kwargs`: {}
301
+ - `warmup_ratio`: 0.1
302
+ - `warmup_steps`: 0
303
+ - `log_level`: passive
304
+ - `log_level_replica`: warning
305
+ - `log_on_each_node`: True
306
+ - `logging_nan_inf_filter`: True
307
+ - `save_safetensors`: True
308
+ - `save_on_each_node`: False
309
+ - `save_only_model`: False
310
+ - `restore_callback_states_from_checkpoint`: False
311
+ - `no_cuda`: False
312
+ - `use_cpu`: False
313
+ - `use_mps_device`: False
314
+ - `seed`: 42
315
+ - `data_seed`: None
316
+ - `jit_mode_eval`: False
317
+ - `use_ipex`: False
318
+ - `bf16`: False
319
+ - `fp16`: True
320
+ - `fp16_opt_level`: O1
321
+ - `half_precision_backend`: auto
322
+ - `bf16_full_eval`: False
323
+ - `fp16_full_eval`: False
324
+ - `tf32`: None
325
+ - `local_rank`: 0
326
+ - `ddp_backend`: None
327
+ - `tpu_num_cores`: None
328
+ - `tpu_metrics_debug`: False
329
+ - `debug`: []
330
+ - `dataloader_drop_last`: False
331
+ - `dataloader_num_workers`: 0
332
+ - `dataloader_prefetch_factor`: None
333
+ - `past_index`: -1
334
+ - `disable_tqdm`: False
335
+ - `remove_unused_columns`: True
336
+ - `label_names`: None
337
+ - `load_best_model_at_end`: True
338
+ - `ignore_data_skip`: False
339
+ - `fsdp`: []
340
+ - `fsdp_min_num_params`: 0
341
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
342
+ - `fsdp_transformer_layer_cls_to_wrap`: None
343
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
344
+ - `deepspeed`: None
345
+ - `label_smoothing_factor`: 0.0
346
+ - `optim`: adamw_torch
347
+ - `optim_args`: None
348
+ - `adafactor`: False
349
+ - `group_by_length`: False
350
+ - `length_column_name`: length
351
+ - `ddp_find_unused_parameters`: None
352
+ - `ddp_bucket_cap_mb`: None
353
+ - `ddp_broadcast_buffers`: False
354
+ - `dataloader_pin_memory`: True
355
+ - `dataloader_persistent_workers`: False
356
+ - `skip_memory_metrics`: True
357
+ - `use_legacy_prediction_loop`: False
358
+ - `push_to_hub`: False
359
+ - `resume_from_checkpoint`: None
360
+ - `hub_model_id`: None
361
+ - `hub_strategy`: every_save
362
+ - `hub_private_repo`: False
363
+ - `hub_always_push`: False
364
+ - `gradient_checkpointing`: False
365
+ - `gradient_checkpointing_kwargs`: None
366
+ - `include_inputs_for_metrics`: False
367
+ - `eval_do_concat_batches`: True
368
+ - `fp16_backend`: auto
369
+ - `push_to_hub_model_id`: None
370
+ - `push_to_hub_organization`: None
371
+ - `mp_parameters`:
372
+ - `auto_find_batch_size`: False
373
+ - `full_determinism`: False
374
+ - `torchdynamo`: None
375
+ - `ray_scope`: last
376
+ - `ddp_timeout`: 1800
377
+ - `torch_compile`: False
378
+ - `torch_compile_backend`: None
379
+ - `torch_compile_mode`: None
380
+ - `dispatch_batches`: None
381
+ - `split_batches`: None
382
+ - `include_tokens_per_second`: False
383
+ - `include_num_input_tokens_seen`: False
384
+ - `neftune_noise_alpha`: None
385
+ - `optim_target_modules`: None
386
+ - `batch_eval_metrics`: False
387
+ - `batch_sampler`: batch_sampler
388
+ - `multi_dataset_batch_sampler`: proportional
389
+
390
+ </details>
391
+
392
+ ### Training Logs
393
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
394
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|
395
+ | 0 | 0 | - | - | 0.2962 |
396
+ | 0.0109 | 1 | 0.0487 | - | - |
397
+ | 0.2732 | 50 | 0.0472 | 0.0748 | 0.5629 |
398
+ | 0.5464 | 100 | 0.0299 | 0.0433 | 0.7509 |
399
+ | 0.8197 | 150 | 0.0207 | 0.0361 | 0.7955 |
400
+ | 1.0929 | 200 | 0.0184 | 0.0341 | 0.7998 |
401
+ | 1.3661 | 250 | 0.0129 | 0.0352 | 0.7952 |
402
+ | 1.6393 | 300 | 0.0125 | 0.0337 | 0.8120 |
403
+ | 1.9126 | 350 | 0.0117 | 0.0319 | 0.8254 |
404
+ | 2.1858 | 400 | 0.0091 | 0.0311 | 0.8300 |
405
+ | 2.4590 | 450 | 0.0071 | 0.0316 | 0.8380 |
406
+ | 2.7322 | 500 | 0.0072 | 0.0318 | 0.8300 |
407
+ | 3.0055 | 550 | 0.007 | 0.0331 | 0.8261 |
408
+ | 3.2787 | 600 | 0.0066 | 0.0309 | 0.8299 |
409
+ | 3.5519 | 650 | 0.006 | 0.0309 | 0.8414 |
410
+ | 3.8251 | 700 | 0.0056 | 0.0336 | 0.8262 |
411
+ | 4.0984 | 750 | 0.0054 | 0.0344 | 0.8348 |
412
+ | 4.3716 | 800 | 0.0049 | 0.0305 | 0.8397 |
413
+ | 4.6448 | 850 | 0.0047 | 0.0295 | 0.8408 |
414
+ | 4.9180 | 900 | 0.0044 | 0.0295 | 0.8411 |
415
+ | 5.1913 | 950 | 0.0044 | 0.0326 | 0.8302 |
416
+ | 5.4645 | 1000 | 0.004 | 0.0303 | 0.8393 |
417
+ | 5.7377 | 1050 | 0.0037 | 0.0300 | 0.8408 |
418
+ | 6.0109 | 1100 | 0.0033 | 0.0310 | 0.8419 |
419
+ | 6.2842 | 1150 | 0.0032 | 0.0296 | 0.8377 |
420
+ | 6.5574 | 1200 | 0.003 | 0.0286 | 0.8441 |
421
+ | 6.8306 | 1250 | 0.0028 | 0.0294 | 0.8414 |
422
+ | 7.1038 | 1300 | 0.0027 | 0.0301 | 0.8420 |
423
+ | 7.3770 | 1350 | 0.0023 | 0.0305 | 0.8450 |
424
+ | 7.6503 | 1400 | 0.0022 | 0.0296 | 0.8443 |
425
+ | 7.9235 | 1450 | 0.002 | 0.0290 | 0.8460 |
426
+ | 8.1967 | 1500 | 0.0017 | 0.0305 | 0.8422 |
427
+
428
+
429
+ ### Framework Versions
430
+ - Python: 3.11.9
431
+ - Sentence Transformers: 3.0.1
432
+ - Transformers: 4.41.2
433
+ - PyTorch: 2.0.1
434
+ - Accelerate: 0.31.0
435
+ - Datasets: 2.19.1
436
+ - Tokenizers: 0.19.1
437
+
438
+ ## Citation
439
+
440
+ ### BibTeX
441
+
442
+ #### Sentence Transformers
443
+ ```bibtex
444
+ @inproceedings{reimers-2019-sentence-bert,
445
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
446
+ author = "Reimers, Nils and Gurevych, Iryna",
447
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
448
+ month = "11",
449
+ year = "2019",
450
+ publisher = "Association for Computational Linguistics",
451
+ url = "https://arxiv.org/abs/1908.10084",
452
+ }
453
+ ```
454
+
455
+ <!--
456
+ ## Glossary
457
+
458
+ *Clearly define terms in order to be accessible across audiences.*
459
+ -->
460
+
461
+ <!--
462
+ ## Model Card Authors
463
+
464
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
465
+ -->
466
+
467
+ <!--
468
+ ## Model Card Contact
469
+
470
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
471
+ -->
added_tokens.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../models/snunlp/KLUE-SRoBERTa-Large-SNUExtended-klueNLI-klueSTS",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 4096,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.41.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 51226
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.0.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0d9e25ed42bb484b2d7ee49d1cbcb6468091ba8054d07d8ebe356721253a73
3
+ size 1425420168
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.txt ADDED
The diff for this file is too large to render. See raw diff