File size: 3,242 Bytes
dff20d0
d5dd95f
 
 
 
6e6f40f
7b7edfb
d5dd95f
7b7edfb
d5dd95f
 
6e6f40f
 
 
 
 
 
dff20d0
 
 
 
 
 
7b7edfb
6e6f40f
7b7edfb
 
 
 
 
6e6f40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dff20d0
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
base_model: nbeerbower/Mahou-1.1-mistral-7B
datasets:
- flammenai/Grill-preprod-v1_chatML
inference: false
library_name: transformers
license: apache-2.0
merged_models:
- flammenai/Mahou-1.0-mistral-7B
pipeline_tag: text-generation
quantized_by: Suparious
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
---
# nbeerbower/Mahou-1.1-mistral-7B AWQ

- Model creator: [nbeerbower](https://huggingface.co/nbeerbower)
- Original model: [Mahou-1.1-mistral-7B](https://huggingface.co/nbeerbower/Mahou-1.1-mistral-7B)

![image/png](https://huggingface.co/flammenai/Mahou-1.0-mistral-7B/resolve/main/mahou1.png)

## Model Summary

Mahou is our attempt to build a production-ready conversational/roleplay LLM.

Future versions will be released iteratively and finetuned from flammen.ai conversational data.

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Mahou-1.1-mistral-7B-AWQ"
system_message = "You are Mahou-1.1-mistral-7B, incarnated as a powerful AI. You were created by nbeerbower."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)
```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code